Resonance damping in ferromagnets and ferroelectrics

被引:11
作者
Widom, A. [1 ]
Sivasubramanian, S. [2 ]
Vittoria, C. [3 ]
Yoon, S. [3 ]
Srivastava, Y. N. [4 ,5 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] Northeastern Univ, NSF Nanoscale Sci & Engn Ctr High Rate Nanomfg, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[4] Univ Perugia, Dept Phys, I-06123 Perugia, Italy
[5] Univ Perugia, INFN, I-06123 Perugia, Italy
基金
美国国家科学基金会;
关键词
RANDOM-ACCESS MEMORY; THIN-FILM FERROELECTRICS; HYSTERESIS; FERAM; MODEL;
D O I
10.1103/PhysRevB.81.212402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phenomenological equations of motion for the relaxation of ordered phases of magnetized and polarized crystal phases can be developed in close analogy with one another. For the case of magnetized systems, the driving magnetic field intensity toward relaxation was developed by Gilbert. For the case of polarized systems, the driving electric field intensity toward relaxation was developed by Khalatnikov. The transport times for relaxation into thermal equilibrium can be attributed to viscous sound wave damping via magnetostriction for the magnetic case and electrostriction for the polarization case.
引用
收藏
页数:4
相关论文
共 36 条
  • [1] E-Field Ferroelectric Sensors: Modeling and Simulation
    Ando, Bruno
    Baglio, Salvatore
    Bulsara, Adi
    Marletta, Vincenzo
    Savalli, Nicolo
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2009, 12 (02) : 31 - 37
  • [2] [Anonymous], 2009, Theory of Elasticity
  • [3] Bhatia AB., 1967, ULTRASONIC ABSORPTIO
  • [4] Scattering theory of Gilbert damping
    Brataas, Arne
    Tserkovnyak, Yaroslav
    Bauer, Gerrit E. W.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (03)
  • [5] Callen H. B., 1962, FLUCTUATION RELAXATI, P176
  • [6] The Gilbert equation revisited:: anisotropic and nonlocal damping of magnetization dynamics
    Faehnle, M.
    Steiauf, D.
    Seib, J.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (16)
  • [7] Gilbert damping in conducting ferromagnets. I. Kohn-Sham theory and atomic-scale inhomogeneity
    Garate, Ion
    MacDonald, Allan
    [J]. PHYSICAL REVIEW B, 2009, 79 (06):
  • [8] A phenomenological theory of damping in ferromagnetic materials
    Gilbert, TL
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (06) : 3443 - 3449
  • [9] GILBERT TL, 1955, 11 ARM RES FDN
  • [10] Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations
    Gilmore, K.
    Idzerda, Y. U.
    Stiles, M. D.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (02)