A Conjugate Gradient Algorithm with Yuan-Wei-Lu Line Search
被引:1
作者:
Yuan, Gonglin
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R ChinaGuangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
Yuan, Gonglin
[1
,2
]
Hu, Wujie
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R ChinaGuangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
Hu, Wujie
[1
]
Sheng, Zhou
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R ChinaGuangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
Sheng, Zhou
[1
]
机构:
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
来源:
CLOUD COMPUTING AND SECURITY, PT II
|
2017年
/
10603卷
基金:
中国国家自然科学基金;
关键词:
Conjugate gradient algorithm;
Optimization;
Line search;
Convergence;
GLOBAL CONVERGENCE;
GUARANTEED DESCENT;
OPTIMIZATION;
D O I:
10.1007/978-3-319-68542-7_64
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This paper presents a three term conjugate gradient algorithm and it has the following properties: (i) the sufficient descent property is satisfied; (ii) the algorithm has the global convergence for non-convex functions; (iii) the numerical results are more effective than that of the normal algorithm.