Validation of Koopmans' theorem for density functional theory binding energies

被引:87
|
作者
Bellafont, Noelia Pueyo [1 ,2 ]
Illas, Francesc [1 ,2 ]
Bagus, Paul S. [3 ]
机构
[1] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain
[2] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain
[3] Univ N Texas, Dept Chem, Denton, TX 76203 USA
关键词
SHAM ORBITAL ENERGIES; OPEN-SHELL SYSTEMS; AUGER-PARAMETER; IONIZATION-POTENTIALS; EXACT EXCHANGE; HOLE STATES; KOHN-SHAM; SHIFTS; THERMOCHEMISTRY; MOLECULES;
D O I
10.1039/c4cp05434b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Both initial state effects, to a good approximation the electrostatic potential at the nucleus, and final state effects, due to the response of the electrons to the presence of the core-hole, contribute to core-level binding energies, BE's. For Hartree-Fock, HF, wavefunctions, Koopmans' theorem, KT, which states that the initial state BE = -epsilon ?s rigorous. However, the KT relationship is commonly used for Kohn-Sham, KS, epsilon's. We review that the KT relationship with KS epsilon's fails to give the absolute initial state contribution to the BE. However, we demonstrate that the shifts of initial state BE's from a reference value are accurately obtained from the shifts of the KS epsilon's. Thus the initial state contributions to BE shifts can be obtained from KT using KS epsilon's. This result validates a large body of work where KT has been used with KS epsilon's to define initial state contributions to BE shifts.
引用
收藏
页码:4015 / 4019
页数:5
相关论文
共 50 条
  • [31] Dissociation Curves and Binding Energies of Diatomic Transition Metal Carbides from Density Functional Theory
    Goel, Satyender
    Masunov, Artem E.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (15) : 4276 - 4287
  • [32] Measurements of binding energies and electromagnetic moments of silver isotopes - A complementary benchmark of density functional theory
    de Groote, R. P.
    Nesterenko, D. A.
    Kankainen, A.
    Bissell, M. L.
    Beliuskina, O.
    Bonnard, J.
    Campbell, P.
    Canete, L.
    Cheal, B.
    Delafosse, C.
    de Roubin, A.
    Devlin, C. S.
    Dobaczewski, J.
    Eronen, T.
    Ruiz, R. F. Garcia
    Geldhof, S.
    Gins, W.
    Hukkanen, M.
    Imgram, P.
    Mathieson, R.
    Koszorus, A.
    Moore, I. D.
    Pohjalainen, I.
    Reponen, M.
    van den Borne, B.
    Vilen, M.
    Zadvornaya, S.
    PHYSICS LETTERS B, 2024, 848
  • [33] THEOREM FOR FUNCTIONAL-DERIVATIVES IN DENSITY-FUNCTIONAL THEORY
    HUI, OY
    LEVY, M
    PHYSICAL REVIEW A, 1991, 44 (01): : 54 - 58
  • [34] Curvature and Frontier Orbital Energies in Density Functional Theory
    Stein, Tamar
    Autschbach, Jochen
    Govind, Niranjan
    Kronik, Leeor
    Baer, Roi
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (24): : 3740 - 3744
  • [35] Energies of organic molecules and atoms in density functional theory
    Csonka, GI
    Ruzsinszky, A
    Tao, JM
    Perdew, JP
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 101 (05) : 506 - 511
  • [36] ION SOLVATION ENERGIES FROM DENSITY FUNCTIONAL THEORY
    CONTRERAS, RR
    AIZMAN, AJ
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1991, 40 : 281 - 288
  • [37] On the determination of excitation energies using density functional theory
    Tozer, DJ
    Handy, NC
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (10) : 2117 - 2121
  • [38] Solvation Free Energies in Subsystem Density Functional Theory
    Bensberg, Moritz
    Tuertscher, Paul L.
    Unsleber, Jan P.
    Reiher, Markus
    Neugebauer, Johannes
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (02) : 723 - 740
  • [40] Excitation energies from density functional perturbation theory
    Filippi, C
    Umrigar, CJ
    Gonze, X
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (23): : 9994 - 10002