Stabilization of parameter estimates from multiexponential decay through extension into higher dimensions

被引:5
作者
Bi, Chuan [1 ]
Fishbein, Kenneth [1 ]
Bouhrara, Mustapha [2 ]
Spencer, Richard G. [1 ]
机构
[1] NIA, Magnet Resonance Imaging & Spect Sect, NIH, Baltimore, MD 21224 USA
[2] NIA, Magnet Resonance Phys Aging & Dementia Unit, NIH, Baltimore, MD 21224 USA
基金
美国国家卫生研究院;
关键词
INVERSE LAPLACE TRANSFORM; MULTIDIMENSIONAL NMR; FLUORESCENCE DECAY; RELAXATION; DISTRIBUTIONS; RESOLUTION; PITFALLS; SUMS;
D O I
10.1038/s41598-022-08638-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analysis of multiexponential decay has remained a topic of active research for over 200 years. This attests to the widespread importance of this problem and to the profound difficulties in characterizing the underlying monoexponential decays. Here, we demonstrate the fundamental improvement in stability and conditioning of this classic problem through extension to a second dimension; we present statistical analysis, Monte-Carlo simulations, and experimental magnetic resonance relaxometry data to support this remarkable fact. Our results are readily generalizable to higher dimensions and provide a potential means of circumventing conventional limits on multiexponential parameter estimation.
引用
收藏
页数:16
相关论文
共 54 条
[1]  
[Anonymous], 1997, NUMERICAL LINEAR ALG
[2]  
[Anonymous], 2013, Least Squares Data Fitting with Applications
[3]  
Bellman R., 1966, Numerical inversion of the Laplace transform: applications to biology, conomics, engineering and physics
[4]   Multidimensional correlation MRI [J].
Benjamini, Dan ;
Basser, Peter J. .
NMR IN BIOMEDICINE, 2020, 33 (12)
[5]   Imaging Local Diffusive Dynamics Using Diffusion Exchange Spectroscopy MRI [J].
Benjamini, Dan ;
Komlosh, Michal E. ;
Basser, Peter J. .
PHYSICAL REVIEW LETTERS, 2017, 118 (15)
[6]   Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods [J].
Berman, Paula ;
Levi, Ofer ;
Parmet, Yisrael ;
Saunders, Michael ;
Wiesman, Zeev .
CONCEPTS IN MAGNETIC RESONANCE PART A, 2013, 42 (03) :72-88
[7]   ON THE RECOVERY AND RESOLUTION OF EXPONENTIAL RELAXATION RATES FROM EXPERIMENTAL-DATA - A SINGULAR-VALUE ANALYSIS OF THE LAPLACE TRANSFORM INVERSION IN THE PRESENCE OF NOISE [J].
BERTERO, M ;
BOCCACCI, P ;
PIKE, ER .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 383 (1784) :15-29
[8]   Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T [J].
Bertleff, Marco ;
Domsch, Sebastian ;
Weingaertner, Sebastian ;
Zapp, Jascha ;
O'Brien, Kieran ;
Barth, Markus ;
Schad, Lothar R. .
NMR IN BIOMEDICINE, 2017, 30 (12)
[9]   Parsimonious discretization for characterizing multi-exponential decay in magnetic resonance [J].
Bonny, Jean-Marie ;
Traore, Amidou ;
Bouhrara, Mustapha ;
Spencer, Richard G. ;
Pages, Guilhem .
NMR IN BIOMEDICINE, 2020, 33 (12)
[10]   How accurately can parameters from exponential models be estimated? A Bayesian view [J].
Bretthorst, GL .
CONCEPTS IN MAGNETIC RESONANCE PART A, 2005, 27A (02) :73-83