Entropy stability analysis of smoothed dissipative particle dynamics

被引:0
作者
Tsuzuki, Satori [1 ]
机构
[1] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2019年 / 3卷 / 11期
关键词
smoothed dissipative particle dynamics; smoothed particle hydrodynamics; thermodynamics; particle discretization; particle methods; mathematical physics; entropy stability analysis; COMPLEX FLUIDS; THERMODYNAMICS; HYDRODYNAMICS;
D O I
10.1088/2399-6528/ab5421
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article presents an entropy stability analysis of smoothed dissipative particle dynamics (SDPD) to review the validity of particle discretization of entropy equations. First, we consider the simplest SDPD system: a simulation of incompressible flows using an explicit time integration scheme, assuming a quasi-static scenario with constant volume, constant number of particles, and infinitesimal time shift. Next, we derive a form of entropy from the discretized entropy equation of SDPD by integrating it with respect to time. We then examine the properties of a two-particle system for a constant temperature gradient. Interestingly, our theoretical analysis suggests that there exist eight different types of entropy stability conditions, which depend on the types of kernel functions. It is found that the Lucy kernel, poly6 kernel, and spiky kernel produce the same types of entropy stability conditions, whereas the spline kernel produces different types of entropy stability conditions. Our results contribute to a deeper understanding of particle discretization.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Static and dynamic properties of smoothed dissipative particle dynamics [J].
Alizadehrad, Davod ;
Fedosov, Dmitry A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 356 :303-318
[2]  
[Anonymous], 1998, Thermodynamics and an introduction to thermostatistics
[3]  
Apostol T. M., 1964, MATH ANAL
[4]   Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media [J].
Bandara, U. C. ;
Tartakovsky, A. M. ;
Oostrom, M. ;
Palmer, B. J. ;
Grate, J. ;
Zhang, C. .
ADVANCES IN WATER RESOURCES, 2013, 62 :356-369
[5]  
Batchelor C. K., 1967, INTRO FLUID DYNAMICS
[6]  
Becker M, 2007, SYMPOSIUM ON COMPUTER ANIMATION 2007: ACM SIGGRAPH/ EUROGRAPHICS SYMPOSIUM PROCEEDINGS, P209
[7]  
Corless R. M., 2013, AMC, V10, P12
[8]  
Desbrun M., 1996, Computer Animation and Simulation '96. Proceedings of the Eurographics Workshop, P61
[9]   Smoothed dissipative particle dynamics -: art. no. 026705 [J].
Español, P ;
Revenga, M .
PHYSICAL REVIEW E, 2003, 67 (02) :12
[10]   SMOOTHED PARTICLE HYDRODYNAMICS - THEORY AND APPLICATION TO NON-SPHERICAL STARS [J].
GINGOLD, RA ;
MONAGHAN, JJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 181 (02) :375-389