Entropy stability analysis of smoothed dissipative particle dynamics

被引:0
|
作者
Tsuzuki, Satori [1 ]
机构
[1] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2019年 / 3卷 / 11期
关键词
smoothed dissipative particle dynamics; smoothed particle hydrodynamics; thermodynamics; particle discretization; particle methods; mathematical physics; entropy stability analysis; COMPLEX FLUIDS; THERMODYNAMICS; HYDRODYNAMICS;
D O I
10.1088/2399-6528/ab5421
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article presents an entropy stability analysis of smoothed dissipative particle dynamics (SDPD) to review the validity of particle discretization of entropy equations. First, we consider the simplest SDPD system: a simulation of incompressible flows using an explicit time integration scheme, assuming a quasi-static scenario with constant volume, constant number of particles, and infinitesimal time shift. Next, we derive a form of entropy from the discretized entropy equation of SDPD by integrating it with respect to time. We then examine the properties of a two-particle system for a constant temperature gradient. Interestingly, our theoretical analysis suggests that there exist eight different types of entropy stability conditions, which depend on the types of kernel functions. It is found that the Lucy kernel, poly6 kernel, and spiky kernel produce the same types of entropy stability conditions, whereas the spline kernel produces different types of entropy stability conditions. Our results contribute to a deeper understanding of particle discretization.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A splitting scheme for highly dissipative smoothed particle dynamics
    Litvinov, S.
    Ellero, M.
    Hu, X. Y.
    Adams, N. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (15) : 5457 - 5464
  • [2] A Comparative Review of Smoothed Particle Hydrodynamics, Dissipative Particle Dynamics and Smoothed Dissipative Particle Dynamics
    Ye, Ting
    Li, Yu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2018, 15 (08)
  • [3] Splitting for Highly Dissipative Smoothed Particle Dynamics
    Litvinov, S.
    Hu, X. Y.
    Adams, N. A.
    IUTAM SYMPOSIUM ON ADVANCES IN MICRO- AND NANOFLUIDICS, 2009, 15 : 207 - 218
  • [4] Self-diffusion coefficient in smoothed dissipative particle dynamics
    Litvinov, Sergey
    Ellero, Marco
    Hu, Xiangyu
    Adams, Nikolaus A.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (02)
  • [5] Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics
    Bian, Xin
    Litvinov, Sergey
    Qian, Rui
    Ellero, Marco
    Adams, Nikolaus A.
    PHYSICS OF FLUIDS, 2012, 24 (01)
  • [6] An integrated boundary approach for colloidal suspensions simulated using smoothed dissipative particle dynamics
    Petsev, Nikolai D.
    Leal, L. Gary
    Shell, M. Scott
    COMPUTERS & FLUIDS, 2019, 179 : 672 - 686
  • [7] Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
    Lei, Huan
    Mundy, Christopher J.
    Schenter, Gregory K.
    Voulgarakis, Nikolaos K.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (19)
  • [8] Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics
    Petsev, Nikolai D.
    Leal, L. Gary
    Shell, M. Scott
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (08)
  • [9] Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
    Petsev, Nikolai D.
    Leal, L. Gary
    Shell, M. Scott
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (04)
  • [10] Smoothed dissipative particle dynamics with angular momentum conservation
    Mueller, Kathrin
    Fedosov, Dmitry A.
    Gompper, Gerhard
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 301 - 315