Bispectral Jacobi type polynomials

被引:1
作者
Duran, Antonio J. [1 ]
de la Iglesia, Manuel D. [2 ]
机构
[1] Univ Seville, Dept Anal Matemat, Apdo POB 1160, Seville 41080, Spain
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
Orthogonal polynomials; Bispectral orthogonal polynomials; Recurrence relations; Krall polynomials; Jacobi polynomials; DIFFERENTIAL-EQUATIONS; COMMUTATIVE ALGEBRAS;
D O I
10.1016/j.aam.2022.102322
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the bispectrality of Jacobi type polynomials, which are eigenfunctions of higher-order differential operators and can be defined by taking suitable linear combinations of a fixed number of consecutive Jacobi polynomials. Jacobi type polynomials include, as particular cases, the Krall-Jacobi polynomials. As the main results we prove that the Jacobi type polynomials always satisfy higher-order recurrence relations (i.e., they are bispectral). We also prove that the Krall-Jacobi families are the only Jacobi type polynomials which are orthogonal with respect to a measure on the real line. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 29 条
[21]   ON A DIFFERENTIAL-EQUATION FOR KOORNWINDERS GENERALIZED LAGUERRE-POLYNOMIALS [J].
KOEKOEK, J ;
KOEKOEK, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1045-1054
[22]   On differential equations for Sobolev-type Laguerre polynomials [J].
Koekoek, J ;
Koekoek, R ;
Bavinck, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) :347-393
[23]   Differential equations for generalized Jacobi polynomials [J].
Koekoek, J ;
Koekoek, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 126 (1-2) :1-31
[25]  
Krall H.L., 1940, The Pennsylvania State College Studies, V6
[26]  
Littlejohn L.L, 1986, QUAEST MATH, V10, P49, DOI DOI 10.1080/16073606.1986.9631591
[27]  
Littlejohn L.L., 1982, QUAEST MATH, V5, P255
[28]  
Shen J, 2011, SPR SER COMPUT MATH, V41, P1, DOI 10.1007/978-3-540-71041-7
[29]   A method of constructing Krall's polynomials [J].
Zhedanov, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 107 (01) :1-20