The sh Lie structure of Poisson brackets in field theory

被引:55
作者
Barnich, G
Fulp, R
Lada, T
Stasheff, J
机构
[1] Penn State Univ, Ctr Gravitat Phys & Geometry, Davey Lab 104, University Pk, PA 16802 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
[4] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200050278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general construction of an sh Lie algebra (L-infinity-algebra) from a homological resolution of a Lie algebra is given. It is applied to the space of local functionals equipped with a Poisson bracket, induced by a bracket for local functions along the lines suggested by Gel'fand, Dickey and Dorfman. In this way, higher order maps are constructed which combine to form an sh Lie algebra on the graded differential algebra of horizontal forms. The same construction applies for graded brackets in field theory such as the Batalin-Fradkin-Vilkovisky bracket of the Hamiltonian BRST theory or the Batalin-Vilkovisky antibracket.
引用
收藏
页码:585 / 601
页数:17
相关论文
共 21 条
[1]  
Anderson I. M., 1996, VARIATIONAL BICOMPLE
[2]   RELATIVISTIC S-MATRIX OF DYNAMICAL-SYSTEMS WITH BOSON AND FERMION CONSTRAINTS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1977, 69 (03) :309-312
[3]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582
[4]   GAUGE ALGEBRA AND QUANTIZATION [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1981, 102 (01) :27-31
[5]   CORRECTION [J].
BLANCHETTE, RA .
PHYTOPATHOLOGY, 1984, 74 (04) :508-508
[6]  
Dickey L.A., 1991, ADV SERIES MATH PHYS, V12
[7]  
DICKEY LA, 1997, POISSON BRACKETS DIV
[8]   QUANTIZATION OF RELATIVISTIC SYSTEMS WITH CONSTRAINTS [J].
FRADKIN, ES ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1975, B 55 (02) :224-226
[9]   QUANTIZATION OF RELATIVISTIC SYSTEMS WITH BOSON AND FERMION 1ST-CLASS AND 2ND-CLASS CONSTRAINTS [J].
FRADKIN, ES ;
FRADKINA, TE .
PHYSICS LETTERS B, 1978, 72 (03) :343-348
[10]  
Gelfand I.M., 1981, FUNCT ANAL APPL, V15, P23