Metal-organic frameworks and their derivatives for metal-air batteries

被引:111
作者
Zhu, Bingjun [1 ,2 ]
Liang, Zibin [1 ]
Xia, Dingguo [1 ]
Zou, Ruqiang [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] Beihang Univ, Coll Space & Environm, Beijing 102206, Peoples R China
基金
中国博士后科学基金;
关键词
Metal-organic framework; Bifunctional; Metal-air battery; Zn-air battery; Li-O-2; battery; OXYGEN REDUCTION REACTION; EFFICIENT BIFUNCTIONAL ELECTROCATALYSTS; CARBON-DIOXIDE CAPTURE; DOPED-CARBON; ENERGY-STORAGE; CATHODE CATALYSTS; ELECTROCHEMICAL PROPERTIES; LI-O-2; BATTERIES; LI-AIR; GRAPHENE;
D O I
10.1016/j.ensm.2019.05.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The challenges of energy depletion and environmental pollution raise the demands for the development of new energy technologies, such as metal-air batteries (MABs). The performance of a metal-air battery heavily relies on two fundamental electrocatalytic reactions, that is, oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which take place at the air cathode during battery discharging and charging, respectively. Metal-organic frameworks (MOFs) and their derivatives stand out as promising candidate catalysts for the once sluggish redox reactions at the cathodes of MABs, due to their unique merits of crystalline porous structures and tunable chemistry. These distinct characteristics of MOFs offer an effective way to introduce bifunctionality (catalytic activity for ORR and OER in the case of MABs) through the design and synthesis of MOF-based catalysts with large surface area, well-developed porous networks, smooth electron and mass transfer pathways and active sites with different catalytic preferences. Herein, this review summarizes recent advances in the design and synthesis of MOF-based catalysts for a range of MABs, including Li-, Zn-, Al-, Fe- and Na-air batteries. By the demonstration of representative examples, this review also discusses the underlying mechanisms for the origin of bifunctional performance and enhanced catalytic activity with MOF-based catalysts. Future challenges and prospects for both MOFs and MABs are also proposed at the end of this review.
引用
收藏
页码:757 / 771
页数:15
相关论文
共 138 条
[1]   A Metal-Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na-Air/Seawater Batteries [J].
Abirami, Mari ;
Hwang, Soo Min ;
Yang, Juchan ;
Senthilkumar, Sirugaloor Thangavel ;
Kim, Junsoo ;
Go, Woo-Seok ;
Senthilkumar, Baskar ;
Song, Hyun-Kon ;
Kim, Youngsik .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (48) :32778-32787
[2]   Cobalt Phosphide Coupled with Heteroatom-Doped Nanocarbon Hybrid Electroctalysts for Efficient, Long-Life Rechargeable Zinc-Air Batteries [J].
Ahn, Sung Hoon ;
Manthiram, Arumugam .
SMALL, 2017, 13 (40)
[3]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[4]   Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].
Bajdich, Michal ;
Garcia-Mota, Monica ;
Vojvodic, Aleksandra ;
Norskov, Jens K. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13521-13530
[5]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[6]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[7]   Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion [J].
Cao, Xiehong ;
Tan, Chaoliang ;
Sindoro, Melinda ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (10) :2660-2677
[8]   MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery [J].
Chen, Biaohua ;
He, Xiaobo ;
Yin, Fengxiang ;
Wang, Hao ;
Liu, Di-Jia ;
Shi, Ruixing ;
Chen, Jinnan ;
Yin, Hongwei .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (37)
[9]   Morphology-Conserved Transformations of Metal-Based Precursors to Hierarchically Porous Micro-/Nanostructures for Electrochemical Energy Conversion and Storage [J].
Chen, Min ;
Zhang, Yueguang ;
Xing, Lidan ;
Liao, Youhao ;
Qiu, Yongcai ;
Yang, Shihe ;
Li, Weishan .
ADVANCED MATERIALS, 2017, 29 (48)
[10]   Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media [J].
Cheng, Yuanhang ;
Tian, Yayuan ;
Fan, Xinzhuang ;
Liu, Jianguo ;
Yan, Chuanwei .
ELECTROCHIMICA ACTA, 2014, 143 :291-296