Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells

被引:307
作者
Wan, Xin [1 ]
Liu, Qingtao [1 ]
Liu, Jieyuan [1 ]
Liu, Shiyuan [1 ]
Liu, Xiaofang [1 ]
Zheng, Lirong [2 ]
Shang, Jiaxiang [1 ]
Yu, Ronghai [1 ]
Shui, Jianglan [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; CATALYTIC SITES; CARBON; PERFORMANCE; ELECTROCATALYST; STABILITY;
D O I
10.1038/s41467-022-30702-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simultaneously increasing the activity and stability of the single-atom active sites of M-N-C catalysts is critical but remains a great challenge. Here, we report an Fe-N-C catalyst with nitrogen-coordinated iron clusters and closely surrounding Fe-N-4 active sites for oxygen reduction reaction in acidic fuel cells. A strong electronic interaction is built between iron clusters and satellite Fe-N-4 due to unblocked electron transfer pathways and very short interacting distances. The iron clusters optimize the adsorption strength of oxygen reduction intermediates on Fe-N-4 and also shorten the bond amplitude of Fe-N-4 with incoherent vibrations. As a result, both the activity and stability of Fe-N-4 sites are increased by about 60% in terms of turnover frequency and demetalation resistance. This work shows the great potential of strong electronic interactions between multiphase metal species for improvements of single-atom catalysts. It is challenging to break the activity-stability trade-off in Fe-N-C fuel cell catalysts. Here, the authors show that interactions between iron atoms and clusters accelerate reaction kinetics and suppress demetalation to improve fuel cell stability.
引用
收藏
页数:11
相关论文
共 70 条
[1]   Preparation of Nonprecious Metal Electrocatalysts for the Reduction of Oxygen Using a Low-Temperature Sacrificial Metal [J].
Al-Zoubi, Talha ;
Zhou, Yu ;
Yin, Xi ;
Janicek, Blanka ;
Sun, Chengjun ;
Schulz, Charles E. ;
Zhang, Xiaohui ;
Gewirth, Andrew A. ;
Huang, Pinshane ;
Zelenay, Piotr ;
Yang, Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) :5477-5481
[2]   From Metal-Organic Framework to Intrinsically Fluorescent Carbon Nanodots [J].
Amali, Arlin Jose ;
Hoshino, Hideto ;
Wu, Chun ;
Ando, Masanori ;
Xu, Qiang .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (27) :8279-8282
[3]   Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters [J].
Ao, Xiang ;
Zhang, Wei ;
Li, Zhishan ;
Li, Jian-Gang ;
Soule, Luke ;
Huang, Xing ;
Chiang, Wei-Hung ;
Chen, Hao Ming ;
Wang, Chundong ;
Liu, Meilin ;
Zeng, Xiao Cheng .
ACS NANO, 2019, 13 (10) :11853-11862
[4]   Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells [J].
Asset, Tristan ;
Atanassov, Plamen .
JOULE, 2020, 4 (01) :33-44
[5]   Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogen-Doped Carbons with Encapsulated Metal Nanoparticles [J].
Chen, Ming-Xi ;
Zhu, Mengzhao ;
Zuo, Ming ;
Chu, Sheng-Qi ;
Zhang, Jing ;
Wu, Yuen ;
Liang, Hai-Wei ;
Feng, Xinliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (04) :1627-1633
[6]   Nano-geometric deformation and synergistic Co nanoparticles-Co-N4 composite sites for proton exchange membrane fuel cells [J].
Cheng, Xiaoyang ;
Yang, Jian ;
Yan, Wei ;
Han, Yu ;
Qu, Ximing ;
Yin, Shuhu ;
Chen, Chi ;
Ji, Ruiyi ;
Li, Yanrong ;
Li, Guang ;
Li, Gen ;
Jiang, Yanxia ;
Sun, Shigang .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (11) :5958-5967
[7]   A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells [J].
Chenitz, Regis ;
Kramm, Ulrike I. ;
Lefevre, Michel ;
Glibin, Vassili ;
Zhang, Gaixia ;
Sun, Shuhui ;
Dodelet, Jean-Pol .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (02) :365-382
[8]   The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium [J].
Choi, Chang Hyuck ;
Lim, Hyung-Kyu ;
Chung, Min Wook ;
Chon, Gajeon ;
Sahraie, Nastaran Ranjbar ;
Altin, Abdulrahman ;
Sougrati, Moulay-Tahar ;
Stievano, Lorenzo ;
Oh, Hyun Seok ;
Park, Eun Soo ;
Luo, Fang ;
Strasser, Peter ;
Drazic, Goran ;
Mayrhofer, Karl J. J. ;
Kim, Hyungjun ;
Jaouen, Frederic .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3176-3182
[9]   Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy [J].
Choi, Chang Hyuck ;
Baldizzone, Claudio ;
Grote, Jan-Philipp ;
Schuppert, Anna K. ;
Jaouen, Frederic ;
Mayrhofer, Karl J. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (43) :12753-12757
[10]   Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks [J].
Chong, Lina ;
Wen, Jianguo ;
Kubal, Joseph ;
Sen, Fatih G. ;
Zou, Jianxin ;
Greeley, Jeffery ;
Chan, Maria ;
Barkholtz, Heather ;
Ding, Wenjiang ;
Liu, Di-Jia .
SCIENCE, 2018, 362 (6420) :1276-+