On some fixed-point theorems for generalized contractions and their perturbations

被引:9
作者
Borkowski, Marcin [1 ]
Bugajewski, Dariusz [2 ]
Zima, Miroslawa [3 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, Optimizat & Control Theory Dept, PL-61614 Poznan, Poland
[2] Morgan State Univ, Baltimore, MD 21251 USA
[3] Univ Rzeszow, Inst Math, PL-35310 Rzeszow, Poland
关键词
Absolute retract; Banach space with a quasimodulus; Cone; Contractive mapping; Functional-integral equations; Hyperconvex metric space; Increasing multifunction; Krasnoselskii-type fixed-point theorems; Non-Archimedean normed space; Nonexpansive mapping; Nonlinear alternative; Palais-Smale condition; Schaefer-type fixed-point theorem; Spectral radius; Spherical completeness; Weakly contractive mapping; Weakly expanding mapping; SPACES; EQUATIONS;
D O I
10.1016/j.jmaa.2010.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove a collection of fixed-point theorems for mappings which can be roughly called generalized contractions or their perturbations. In particular, we are going to consider operators (single-valued or multi-valued) in Banach spaces with a quasimodulus, in hyperconvex subsets of normed spaces, or finally in non-Archimedean spaces. A particular attention will be paid to Krasnoselskii-type fixed-point theorems as well as to a Schaefer-type fixed-point theorem. Some applications to nonlinear functional-integral equations will be given. Our results extend and complement some commonly known theorems. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:464 / 475
页数:12
相关论文
共 28 条
[1]  
Altman M., 1955, B ACAD POL SCI, V3, P409
[2]  
Appell J., 1990, CAMBRIDGE TRACTS MAT, V95
[3]  
Aronszajn N., 1956, Pacific J. Math., V6, P405
[4]  
ARONSZAJN N, 1930, THESIS WARSAW U
[5]  
Baillon J. B., 1988, FIXED POINT THEORY I, V72, P11, DOI DOI 10.1090/CONM/072/956475
[6]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[7]   Hyperconvex spaces revisited [J].
Borkowski, M ;
Bugajewski, D ;
Przybycien, H .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 68 (02) :191-203
[8]  
Borkowski M, 2008, P AM MATH SOC, V136, P973
[9]   Fixed-point theorems in hyperconvex spaces revisited [J].
Bugajewski, D .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (11-13) :1457-1461
[10]  
Bugajewski D, 2000, LECT NOTES PURE APPL, V213, P85