Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type

被引:26
作者
Chen, Zhengzheng [1 ]
He, Lin [2 ]
Zhao, Huijiang [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Korteweg system; Traveling wave solutions; Nonlinear stability; L-2-energy estimates; NAVIER-STOKES EQUATIONS; VISCOUS SHOCK-WAVES; ASYMPTOTIC STABILITY; CONSERVATION-LAWS; VANDERWAALS FLUID; SYSTEM; BOUNDARY; EXISTENCE; GAS;
D O I
10.1016/j.jmaa.2014.09.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and time-asymptotic nonlinear stability of traveling wave solutions to the Cauchy problem of the one-dimensional compressible fluid models of Korteweg type, which governs the motions of the compressible fluids with internal capillarity. The existence of traveling wave solutions is obtained by the phase plane analysis, then the traveling wave solution is shown to be asymptotically stable by the elementary L-2-energy method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1213 / 1234
页数:22
相关论文
共 35 条
[1]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[2]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[3]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[4]   Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system [J].
Chen, Zhengzheng ;
Zhao, Huijiang .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (03) :330-371
[5]   Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type [J].
Chen, Zhengzheng ;
Xiao, Qinghua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (17) :2265-2279
[6]   Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type [J].
Chen, Zhengzheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :438-448
[7]   Existence of solutions for compressible fluid models of Korteweg type [J].
Danchin, R ;
Desjardins, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (01) :97-133
[8]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95
[10]   Two-phase binary fluids and immiscible fluids described by an order parameter [J].
Gurtin, ME ;
Polignone, D ;
Vinals, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (06) :815-831