Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay

被引:43
作者
Bai, Zhenguo [1 ]
Zhang, Shengli [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Traveling wave solutions; Diffusive SIR model; Distributed delay; Schauder's fixed point theorem; VECTOR-DISEASE-MODEL; MONOSTABLE EQUATIONS; ASYMPTOTIC SPEED; EXISTENCE; SYSTEMS; FRONTS; SPREAD; PROPAGATION; STABILITY; INFLUENZA;
D O I
10.1016/j.cnsns.2014.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates of the form beta S(x,t) integral(h)(0) f(tau)g(I(x,t - tau))d tau. We find that the existence of traveling waves is determined by the basic reproduction number of the corresponding spatial- homogenous delay differential equations and the minimal wave speed. The existence proof is to introduce an auxiliary system and apply Schauder's fixed point theorem. The non- existence of traveling waves is obtained by two- sided Laplace transform. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:1370 / 1381
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 2002, MATH BIOL
[2]  
BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
[3]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[4]   Uniqueness of travelling waves for nonlocal monostable equations [J].
Carr, J ;
Chmaj, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) :2433-2439
[5]  
Diekmann O., 1978, Nonlinear Analysis: Theory, Methods and Applications, V2, P721, DOI [10.1016/0362-546X(78)90015-9, DOI 10.1016/0362-546X(78)90015-9]
[6]   Travelling wave solutions for an infection-age structured model with diffusion [J].
Ducrot, A. ;
Magal, P. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :459-482
[7]   Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model [J].
Enatsu, Yoichi ;
Nakata, Yukihiko ;
Muroya, Yoshiaki .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) :2120-2133
[8]   Existence of traveling wave solutions in a diffusive predator-prey model [J].
Huang, JH ;
Lu, G ;
Ruan, SG .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (02) :132-152
[9]   Traveling Wave Solutions for a Class of Predator-Prey Systems [J].
Huang, Wenzhang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (03) :633-644
[10]   Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems [J].
Li, Wan-Tong ;
Lin, Guo ;
Ruan, Shigui .
NONLINEARITY, 2006, 19 (06) :1253-1273