Computational Segmentation and Classification of Diabetic Glomerulosclerosis

被引:138
作者
Ginley, Brandon [1 ]
Lutnick, Brendon [1 ]
Jen, Kuang-Yu [6 ]
Fogo, Agnes B. [7 ,8 ,9 ]
Jain, Sanjay [10 ]
Rosenberg, Avi [11 ]
Walavalkar, Vighnesh [12 ]
Wilding, Gregory [2 ]
Tomaszewski, John E. [1 ,3 ]
Yacoub, Rabi [5 ]
Rossi, Giovanni Maria [11 ,13 ]
Sarder, Pinaki [1 ,2 ,4 ]
机构
[1] Univ Buffalo State Univ New York, Dept Pathol & Anat Sci, Buffalo, NY 14203 USA
[2] Univ Buffalo State Univ New York, Dept Biostat, Buffalo, NY 14203 USA
[3] Univ Buffalo State Univ New York, Dept Biomed Informat, Buffalo, NY 14203 USA
[4] Univ Buffalo State Univ New York, Dept Biomed Engn, Buffalo, NY 14203 USA
[5] Univ Buffalo State Univ New York, Dept Med, Div Nephrol, Buffalo, NY 14203 USA
[6] Univ Calif Davis, Davis Med Ctr, Dept Pathol & Lab Med, Sacramento, CA 95817 USA
[7] Vanderbilt Univ, Dept Pathol, Nashville, TN USA
[8] Vanderbilt Univ, Dept Microbiol, 221 Kirkland Hall, Nashville, TN 37235 USA
[9] Vanderbilt Univ, Dept Immunol & Med, 221 Kirkland Hall, Nashville, TN 37235 USA
[10] Washington Univ, Sch Med, Dept Med, Div Nephrol, St Louis, MO 63110 USA
[11] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21205 USA
[12] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA
[13] Univ Parma, Dipartimento Med & Chirurg, Azienda Osped Univ Parma, UO Nefrol, Parma, Italy
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2019年 / 30卷 / 10期
关键词
DISTANCE TRANSFORMS; NEURAL-NETWORK; TIME-SERIES;
D O I
10.1681/ASN.2018121259
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Pathologists use visual classification of glomerular lesions to assess samples from patients with diabetic nephropathy (DN). The results may vary among pathologists. Digital algorithms may reduce this variability and provide more consistent image structure interpretation. Methods We developed a digital pipeline to classify renal biopsies from patients with DN. We combined traditional image analysis with modern machine learning to efficiently capture important structures, minimize manual effort and supervision, and enforce biologic prior information onto our model. To computationally quantify glomerular structure despite its complexity, we simplified it to three components consisting of nuclei, capillary lumina and Bowman spaces; and Periodic Acid-Schiff positive structures. We detected glomerular boundaries and nuclei from whole slide images using convolutional neural networks, and the remaining glomerular structures using an unsupervised technique developed expressly for this purpose. We defined a set of digital features which quantify the structural progression of DN, and a recurrent network architecture which processes these features into a classification. Results Our digital classification agreed with a senior pathologist whose classifications were used as ground truth with moderate Cohen's kappa kappa = 0.55 and 95% confidence interval [0.50, 0.60]. Two other renal pathologists agreed with the digital classification with kappa(1) = 0.68, 95% interval [0.50, 0.86] and kappa(2) = 0.48, 95% interval [0.32, 0.64]. Our results suggest computational approaches are comparable to human visual classification methods, and can offer improved precision in clinical decision workflows. We detected glomerular boundaries from whole slide images with 0.93 +/- 0.04 balanced accuracy, glomerular nuclei with 0.94 sensitivity and 0.93 specificity, and glomerular structural components with 0.95 sensitivity and 0.99 specificity. Conclusions Computationally derived, histologic image features hold significant diagnostic information that may augment clinical diagnostics.
引用
收藏
页码:1953 / 1967
页数:15
相关论文
共 32 条
[1]  
[Anonymous], DIAB REP CARD
[2]  
Bradley Derek, 2007, Journal of Graphics Tools, V12, P13
[3]   Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-Stained Whole Kidney Sections [J].
Bukowy, John D. ;
Dayton, Alex ;
Cloutier, Dustin ;
Manis, Anna D. ;
Staruschenko, Alexander ;
Lombard, Julian H. ;
Woods, Leah C. Solberg ;
Beard, Daniel A. ;
Cowley, Allen W., Jr. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (08) :2081-2088
[4]   Recurrent Neural Networks for Multivariate Time Series with Missing Values [J].
Che, Zhengping ;
Purushotham, Sanjay ;
Cho, Kyunghyun ;
Sontag, David ;
Liu, Yan .
SCIENTIFIC REPORTS, 2018, 8
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]  
Cheng H., 2006, Multistep-Ahead Time Series Prediction
[7]  
Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
[8]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[9]  
Diederik P., 2015, 3 INT C LEARN REPR I
[10]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]