3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures

被引:103
作者
Gutierrez, Elena [1 ,2 ]
Burdiles, Patricio A. [1 ]
Quero, Franck [2 ,3 ]
Palma, Patricia [4 ]
Olate-Moya, Felipe [1 ]
Palza, Humberto [1 ,3 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Lab Polimeros, Dept Ingn Quim Biotecnol & Mat, Santiago 8370456, Chile
[2] Univ Chile, Lab Nanocelulosa & Biomat, Dept Ingn Quim Biotecnol & Mat, Fac Ciencias Fis & Matemat, Santiago 8370456, Chile
[3] Univ Chile, Millennium Nuclei Soft Smart Mech Metamat, Santiago 8370456, Chile
[4] Univ Chile, Fac Odontol, Lab Microbiol Oral, Area Peptidos & Compuestos Antimicrobianos, Olivos 943, Independencia 8380544, Chile
关键词
antimicrobial materials; 3D printing; bacterial cellulose; copper; active hydrogels; ALGINATE; SILVER; GOLD; NANOPARTICLES; FABRICATION; EFFICACY; DEGRADATION; ANTIFUNGAL; ADSORPTION; BACTERIAL;
D O I
10.1021/acsbiomaterials.9b01048
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Novel antimicrobial 3D-printed alginate/bacterial-cellulose hydrogels with in situ-synthesized copper nanostructures were developed having improved printability. Prior to 3D printing, two methods were tested for the development of the alginate hydrogels: (a) ionic cross-linking with calcium ions followed by ion exchange with copper ions (method A) and (b) ionic cross-linking with copper ions (method B). A solution containing sodium borohydride, used as a reducing agent, was subsequently added to the hydrogels, producing in situ clusters of copper nanoparticles embedded in the alginate hydrogel matrix. The method used and concentrations of copper and the reducing agent were found to affect the stability of the alginate/copper hydrogels, with method A producing more stable materials. By increasing the alginate concentration from 1 to 4 wt % and by using method A, alginate/bacterial-cellulose/copper hydrogel structures were 3D-printed having excellent printability as compared with pure alginate hydrogels. It is noteworthy that after reduction with sodium borohydride, the 3D structures presented antimicrobial behavior against Escherichia cola and Staphylococcus aureus strains. Our results introduce a simple route for the production of alginate/cellulose inks with improved behavior toward antimicrobial 3D-printed materials.
引用
收藏
页码:6290 / 6299
页数:19
相关论文
共 52 条
[1]   Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials [J].
Al-Ahmad, A. ;
Wiedmann-Al-Ahmad, M. ;
Carvalho, C. ;
Lang, M. ;
Follo, M. ;
Braun, G. ;
Wittmer, A. ;
Muelhaupt, R. ;
Hellwig, E. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 87A (04) :933-943
[2]   In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds [J].
Albanna, Mohammed ;
Binder, Kyle W. ;
Murphy, Sean V. ;
Kim, Jaehyun ;
Qasem, Shadi A. ;
Zhao, Weixin ;
Tan, Josh ;
El-Amin, Idris B. ;
Dice, Dennis D. ;
Marco, Julie ;
Green, Jason ;
Xu, Tao ;
Skardal, Aleksander ;
Holmes, James H. ;
Jackson, John D. ;
Atala, Anthony ;
Yoo, James J. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   Copper as a biocidal tool [J].
Borkow, G ;
Gabbay, J .
CURRENT MEDICINAL CHEMISTRY, 2005, 12 (18) :2163-2175
[4]   A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models [J].
Burd, Andrew ;
Kwok, Chi H. ;
Hung, Siu C. ;
Chan, Hui S. ;
Gu, Hua ;
Lam, Wai K. ;
Huang, Lin .
WOUND REPAIR AND REGENERATION, 2007, 15 (01) :94-104
[5]  
Castellano Joseph J, 2007, Int Wound J, V4, P114, DOI 10.1111/j.1742-481X.2007.00316.x
[6]   Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes [J].
Chen, Meijie ;
He, Yurong ;
Zhu, Jiaqi ;
Kim, Dong Rip .
ENERGY CONVERSION AND MANAGEMENT, 2016, 112 :21-30
[7]   Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties [J].
Cioffi, N ;
Torsi, L ;
Ditaranto, N ;
Tantillo, G ;
Ghibelli, L ;
Sabbatini, L ;
Bleve-Zacheo, T ;
D'Alessio, M ;
Zambonin, PG ;
Traversa, E .
CHEMISTRY OF MATERIALS, 2005, 17 (21) :5255-5262
[8]   Antifungal activity of polymer-based copper nanocomposite coatings [J].
Cioffi, N ;
Torsi, L ;
Ditaranto, N ;
Sabbatini, L ;
Zambonin, PG ;
Tantillo, G ;
Ghibelli, L ;
D'Alessio, M ;
Bleve-Zacheo, T ;
Traversa, E .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2417-2419
[9]   Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy [J].
Gallant-Behm, CL ;
Yin, HQ ;
Liu, SJ ;
Heggers, JP ;
Langford, RE ;
Olson, ME ;
Hart, DA ;
Burrell, RE .
WOUND REPAIR AND REGENERATION, 2005, 13 (04) :412-421
[10]   Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate [J].
Gao, Xiangpeng ;
Zhang, Yan ;
Zhao, Yuming .
CARBOHYDRATE POLYMERS, 2017, 159 :108-115