Multiplicity of solutions for quasilinear elliptic equations in RN

被引:16
作者
Aouaoui, Sami [1 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
Nondifferentiable functional; Nonsmooth critical point theory; Saddle points; NONLINEAR SCHRODINGER-EQUATIONS; EXISTENCE; FUNCTIONALS;
D O I
10.1016/j.jmaa.2010.04.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study some quasilinear elliptic problem for which we prove the existence of infinitely many weak solutions on R-N. All the coefficient involved the unknown function. So the using of a nonsmooth critical point theory approach. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:639 / 648
页数:10
相关论文
共 18 条
[1]  
[Anonymous], TOP METH NONLINEAR A
[2]  
[Anonymous], TOPOLOGICAL METHODS
[3]  
[Anonymous], 1993, Topol. Methods Nonlinear Anal., DOI DOI 10.12775/TMNA.1993.012
[4]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[5]  
[Anonymous], 1995, Topol. Methods Nonlinear Anal.
[6]  
[Anonymous], 2000, Differential Integral Equations
[7]   Existence of critical points for some noncoercive functionals [J].
Arcoya, D ;
Boccardo, L ;
Orsina, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (04) :437-457
[8]   Some remarks on critical point theory for nondifferentiable functionals [J].
Arcoya, David ;
Boccardo, Lucio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :79-100
[9]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[10]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741