The optimal start control problem for 2D Boussinesq equations

被引:9
作者
Baranovskii, E. S. [1 ]
机构
[1] Voronezh State Univ, Voronezh, Russia
关键词
Boussinesq equations; optimal control; start control; evolution operator; variational inequalities; NAVIER-STOKES; BOUNDARY CONTROL; SOLVABILITY;
D O I
10.1070/IM9099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of the optimal start control for two-dimensional Boussinesq equations describing non-isothermal flows of a viscous fluid in a bounded domain. Using the study of the properties of admissible tuples and of the evolution operator, we prove the solubility of the optimization problem under natural assumptions about the model data. We derive a variational inequality which is satisfied by the optimal control provided that the objective functional is determined by the final observation. We also obtain sufficient conditions for the uniqueness of an optimal control.
引用
收藏
页码:221 / 242
页数:22
相关论文
共 36 条
[1]  
ADAMS R. A., 2003, Sobolev spaces, V140
[2]   Stability of solutions to extremal problems of boundary control for stationary heat convection equations [J].
Alekseev G.V. ;
Khludnev A.M. .
Journal of Applied and Industrial Mathematics, 2011, 5 (01) :1-13
[3]  
Alekseev G.V., 2010, SIB ZH INDUSTR MATEM, V13, P5
[4]  
Alekseev G.V., 2008, Analysis and Optimization in Viscous Fluid Dynamics
[5]   Stability of Optimal Controls for the Stationary Boussinesq Equations [J].
Alekseev, Gennady ;
Tereshko, Dmitry .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
[7]  
[Anonymous], 1999, Uspekhi Mat. Nauk, DOI DOI 10.4213/rm153
[8]   Optimal boundary control of nonlinear-viscous fluid flows [J].
Baranovskii, E. S. .
SBORNIK MATHEMATICS, 2020, 211 (04) :505-520
[9]   Strong Solutions of the Incompressible Navier-Stokes-Voigt Model [J].
Baranovskii, Evgenii S. .
MATHEMATICS, 2020, 8 (02)
[10]   Optimal Boundary Control of Non-Isothermal Viscous Fluid Flow [J].
Baranovskii, Evgenii S. ;
Domnich, Anastasia A. ;
Artemov, Mikhail A. .
FLUIDS, 2019, 4 (03)