Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing

被引:200
作者
Klabunde, T
Sharma, S
Telenti, A
Jacobs, WR
Sacchettini, JC [1 ]
机构
[1] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[2] Univ Bern, Inst Med Microbiol, CH-3010 Bern, Switzerland
[3] Albert Einstein Coll Med, Dept Microbiol, Bronx, NY 10451 USA
[4] Albert Einstein Coll Med, Dept Immunol, Bronx, NY 10451 USA
[5] Albert Einstein Coll Med, Howard Hughes Med Inst, Bronx, NY 10451 USA
关键词
D O I
10.1038/nsb0198-31
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Several genes from prokaryotes and lower eukaryotes have been found to contain an in-frame open reading frame, which encodes for an internal protein (intein). Post-translationally, the internal polypeptide auto-splices and ligates the external sequences to yield a functional external protein (extein) and an intein. Most, but not all inteins, contain, apart from a splicing domain, a separate endonucleolytic domain that enables them to maintain their presence by a homing mechanism, We report here the crystal structure of an intein found in the gyrase A subunit from Mycobacterium xenopi at 2.2 Angstrom resolution, The structure contains an unusual P-fold with the catalytic splice junctions at the ends of two adjacent antiparallel P-strands. The arrangement of the active site residues Ser 1, Thr 72, His 75, His 197, and Asn 198 is consistent with a four-step mechanism for the cleavage-ligation reaction. Using site-directed mutagenesis, the N-terminal cysteine, proposed as the nucleophile in the first step of the splicing reaction, was changed to a Ser 1 and Ala 0, thus capturing the intein in a pre-spliced state.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 34 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   A PROTEIN CATALYTIC FRAMEWORK WITH AN N-TERMINAL NUCLEOPHILE IS CAPABLE OF SELF-ACTIVATION [J].
BRANNIGAN, JA ;
DODSON, G ;
DUGGLEBY, HJ ;
MOODY, PCE ;
SMITH, JL ;
TOMCHICK, DR ;
MURZIN, AG .
NATURE, 1995, 378 (6555) :416-419
[3]   VDE ENDONUCLEASE CLEAVES SACCHAROMYCES-CEREVISIAE GENOMIC DNA AT A SINGLE SITE - PHYSICAL MAPPING OF THE VMA1 GENE [J].
BREMER, MCD ;
GIMBLE, FS ;
THORNER, J ;
SMITH, CL .
NUCLEIC ACIDS RESEARCH, 1992, 20 (20) :5484-5484
[4]  
BRUNGER AT, 1992, XPLOR VERSION 3 1 SY
[5]   PROTEIN SPLICING OF THE YEAST TFP1 INTERVENING PROTEIN-SEQUENCE - A MODEL FOR SELF-EXCISION [J].
COOPER, AA ;
CHEN, YJ ;
LINDORFER, MA ;
STEVENS, TH .
EMBO JOURNAL, 1993, 12 (06) :2575-2583
[6]   PROTEIN SPLICING - SELF-SPLICING OF GENETICALLY MOBILE ELEMENTS AT THE PROTEIN LEVEL [J].
COOPER, AA ;
STEVENS, TH .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (09) :351-356
[7]   PROTEIN SPLICING IN THE MATURATION OF MYCOBACTERIUM-TUBERCULOSIS RECA PROTEIN - A MECHANISM FOR TOLERATING A NOVEL CLASS OF INTERVENING SEQUENCE [J].
DAVIS, EO ;
JENNER, PJ ;
BROOKS, PC ;
COLSTON, MJ ;
SEDGWICK, SG .
CELL, 1992, 71 (02) :201-210
[8]   SYNTHESIS OF PROTEINS BY NATIVE CHEMICAL LIGATION [J].
DAWSON, PE ;
MUIR, TW ;
CLARKLEWIS, I ;
KENT, SBH .
SCIENCE, 1994, 266 (5186) :776-779
[9]   STRUCTURE OF PAPAIN [J].
DRENTH, J ;
JANSONIUS, JN ;
KOEKOEK, R ;
SWEN, HM ;
WOLTHERS, BG .
NATURE, 1968, 218 (5145) :929-+
[10]   Crystal structure of PI-Scel, a homing endonuclease with protein splicing activity [J].
Duan, XQ ;
Gimble, FS ;
Quiocho, FA .
CELL, 1997, 89 (04) :555-564