Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective

被引:58
作者
Asghari, Elnaz [1 ]
Abdullah, Muhammad Imran [2 ]
Foroughi, Faranak [3 ]
Lamb, Jacob J. [4 ]
Pollet, Bruno G. [3 ,5 ]
机构
[1] Univ Tabriz, Fac Chem, Dept Phys Chem, Electrochem Res Lab, Tabriz, Iran
[2] Univ Sci & Technol China, CAS Key Lab Soft Matter Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Norwegian Univ Sci & Technol NTNU, Fac Engn, Dept Energy & Proc Engn, Hydrogen Energy & Sonochem Res Grp, NO-7491 Trondheim, Norway
[4] Norwegian Univ Sci & Technol NTNU, Fac Engn, Dept Energy & Proc Engn, ENERSENSE, NO-7491 Trondheim, Norway
[5] Univ Quebec Trois Rivieres UQTR, Hydrogen Res Inst HRI, GreenH2Lab, Pollet Res Grp, 3351 Blvd Forges, Trois Rivieres, PQ G9A 5H7, Canada
关键词
Seawater electrolysis; Electrocatalyst; Hydrogen evolution reaction; (HER); Oxygen evolution reaction (OER); LOW-COST; EVOLUTION; EFFICIENT; OXIDATION; CATALYST;
D O I
10.1016/j.coelec.2021.100879
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With increasing energy consumption and greenhouse gas emissions, the importance of developing renewable energy sources to replace fossil fuels has become a vital global task. Hydrogen produced via water electrolysis powered by renewable energy systems at a large scale is an essential measure to reduce greenhouse gas and particulate emissions. Electrolysers use a substantial amount of water (mainly freshwater) to produce hydrogen and oxygen at the cathode, and anode, respectively. However, seawater is preferred because it is the most abundant water resource. Although many R&D efforts on seawater electrolysis have been carried out since the 1970s, the barriers are the undesired chlorine gas evolution reaction at the anode, and corrosion induced by chloride ions. Unlike the available data for electrocatalyst materials based upon platinum group metals in pure solutions, limited data is available for electrocatalysts in seawater. Therefore, there is an urgent need to develop new electrocatalysts for seawater electrolysis.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Chlorine-free alkaline seawater electrolysis for hydrogen production' [J].
Amikam, Gidon ;
Natiu, Paz ;
Gendel, Youri .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (13) :6504-6514
[2]   An alternative approach to selective sea water oxidation for hydrogen production [J].
Balaji, Rengarajan ;
Balasingam, Suresh Kannan ;
Lakshmi, Jothinathan ;
Senthil, Natarajan ;
Vasudevan, Subramanyan ;
Sozhan, Ganapathy ;
Shukla, Ashok Kumar ;
Ravichandran, Subbiah .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (08) :1700-1702
[3]   Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale [J].
Ben-Naim, Micha ;
Liu, Yunzhi ;
Stevens, Michaela Burke ;
Lee, Kyuho ;
Wette, Melissa R. ;
Boubnov, Alexey ;
Trofimov, Artem A. ;
Ievlev, Anton V. ;
Belianinov, Alex ;
Davis, Ryan C. ;
Clemens, Bruce M. ;
Bare, Simon R. ;
Hikita, Yasuyuki ;
Hwang, Harold Y. ;
Higgins, Drew C. ;
Sinclair, Robert ;
Jaramillo, Thomas F. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (34)
[4]   Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process [J].
Bigiani, Lorenzo ;
Barreca, Davide ;
Gasparotto, Alberto ;
Andreu, Teresa ;
Verbeeck, Johan ;
Sada, Cinzia ;
Modin, Evgeny ;
Lebedev, Oleg I. ;
Morante, Juan Ramon ;
Maccato, Chiara .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 284
[5]   Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH [J].
Cheng, Feifei ;
Feng, Xiaolei ;
Chen, Xu ;
Lin, Weiguo ;
Rong, Junfeng ;
Yang, Wensheng .
ELECTROCHIMICA ACTA, 2017, 251 :336-343
[6]   Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study [J].
Claudel, Fabien ;
Dubau, Laetitia ;
Berthome, Gregory ;
Sola-Hernandez, Lluis ;
Beauger, Christian ;
Piccolo, Laurent ;
Maillard, Frederic .
ACS CATALYSIS, 2019, 9 (05) :4688-4698
[7]   Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation [J].
Cui, Baihua ;
Hu, Zheng ;
Liu, Chang ;
Liu, Siliang ;
Chen, Fangshuai ;
Hu, Shi ;
Zhang, Jinfeng ;
Zhou, Wei ;
Deng, Yida ;
Qin, Zhenbo ;
Wu, Zhong ;
Chen, Yanan ;
Cui, Lifeng ;
Hu, Wenbin .
NANO RESEARCH, 2021, 14 (04) :1149-1155
[8]   Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea [J].
d'Amore-Domenech, Rafael ;
Santiago, Oscar ;
Leo, Teresa J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
[9]   Oxygen-Defect-Rich Cobalt Ferrite Nanoparticles for Practical Water Electrolysis with High Activity and Durability [J].
Debnath, Bharati ;
Parvin, Sahanaz ;
Dixit, Harsha ;
Bhattacharyya, Sayan .
CHEMSUSCHEM, 2020, 13 (15) :3875-3886
[10]   Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis [J].
Dionigi, Fabio ;
Reier, Tobias ;
Pawolek, Zarina ;
Gliech, Manuel ;
Strasser, Peter .
CHEMSUSCHEM, 2016, 9 (09) :962-972