Alternating direction method of multipliers with difference of convex functions

被引:21
|
作者
Sun, Tao [1 ]
Yin, Penghang [2 ]
Cheng, Lizhi [3 ,4 ]
Jiang, Hao [5 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[4] Natl Univ Def Technol, State Key Lab High Performance Computat, Changsha 410073, Hunan, Peoples R China
[5] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Nonconvex; Alternating direction method of multipliers; Difference of convex functions; Kurdyka-Lojasiewicz property; MINIMIZATION; CONVERGENCE; NONCONVEX; ALGORITHM;
D O I
10.1007/s10444-017-9559-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrated alternating direction method of multipliers (ADMM), a direct application of ADMM often leads to difficult nonconvex subproblems. To address this issue, we propose to convexify the subproblems through a linearization technique as done in the difference of convex functions algorithm (DCA). By assuming the Kurdyka-Aojasiewicz property, we prove that the resulting algorithm sequentially converges to a critical point. It turns out that in the applications of signal and image processing such as compressed sensing and image denoising, the proposed algorithm usually enjoys closed-form solutions of the subproblems and thus can be very efficient. We provide numerical experiments to demonstrate the effectiveness of our algorithm.
引用
收藏
页码:723 / 744
页数:22
相关论文
共 50 条
  • [41] Adaptive Linearized Alternating Direction Method of Multipliers for Non-Convex Compositely Regularized Optimization Problems
    Qiao, Linbo
    Zhang, Bofeng
    Lu, Xicheng
    Su, Jinshu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2017, 22 (03) : 328 - 341
  • [42] Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration
    Poon, Clarice
    Liang, Jingwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [43] An Improved Alternating Direction Method of Multipliers for Matrix Completion
    Yan, Xihong
    Zhang, Ning
    Li, Hao
    FOUNDATIONS OF COMPUTING AND DECISION SCIENCES, 2024, 49 (01) : 49 - 62
  • [44] Decentralized Quadratically Approximated Alternating Direction Method of Multipliers
    Mokhtari, Aryan
    Shi, Wei
    Ling, Qing
    Ribeiro, Alejandro
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 795 - 799
  • [45] A symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming
    Liu, Jing
    Duan, Yongrui
    Sun, Min
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [46] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Xu, Jiawei
    Chao, Miantao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1757 - 1783
  • [47] ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR LINEAR INVERSE PROBLEMS
    Jiao, Yuling
    Jin, Qinian
    Lu, Xiliang
    Wang, Weijie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2114 - 2137
  • [48] LINEARIZED ALTERNATING DIRECTION METHOD OF MULTIPLIERS WITH GAUSSIAN BACK SUBSTITUTION FOR SEPARABLE CONVEX PROGRAMMING
    He, Bingsheng
    Yuan, Xiaoming
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2013, 3 (02): : 247 - 260
  • [49] THE BOOSTED DIFFERENCE OF CONVEX FUNCTIONS ALGORITHM FOR NONSMOOTH FUNCTIONS
    Aragon Artacho, Francisco J.
    Vuong, Phan T.
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 980 - 1006
  • [50] ALTERNATING DIRECTION METHOD OF MULTIPLIERS WITH VARIABLE METRIC INDEFINITE PROXIMAL TERMS FOR CONVEX OPTIMIZATION
    Gu, Yan
    Yamashita, Nobuo
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 487 - 510