Alternating direction method of multipliers with difference of convex functions

被引:21
|
作者
Sun, Tao [1 ]
Yin, Penghang [2 ]
Cheng, Lizhi [3 ,4 ]
Jiang, Hao [5 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[4] Natl Univ Def Technol, State Key Lab High Performance Computat, Changsha 410073, Hunan, Peoples R China
[5] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Nonconvex; Alternating direction method of multipliers; Difference of convex functions; Kurdyka-Lojasiewicz property; MINIMIZATION; CONVERGENCE; NONCONVEX; ALGORITHM;
D O I
10.1007/s10444-017-9559-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrated alternating direction method of multipliers (ADMM), a direct application of ADMM often leads to difficult nonconvex subproblems. To address this issue, we propose to convexify the subproblems through a linearization technique as done in the difference of convex functions algorithm (DCA). By assuming the Kurdyka-Aojasiewicz property, we prove that the resulting algorithm sequentially converges to a critical point. It turns out that in the applications of signal and image processing such as compressed sensing and image denoising, the proposed algorithm usually enjoys closed-form solutions of the subproblems and thus can be very efficient. We provide numerical experiments to demonstrate the effectiveness of our algorithm.
引用
收藏
页码:723 / 744
页数:22
相关论文
共 50 条
  • [31] A golden ratio proximal alternating direction method of multipliers for separable convex optimization
    Hongmei Chen
    Guoyong Gu
    Junfeng Yang
    Journal of Global Optimization, 2023, 87 : 581 - 602
  • [32] A stochastic alternating direction method of multipliers for non-smooth and non-convex optimization
    Bian, Fengmiao
    Liang, Jingwei
    Zhang, Xiaoqun
    INVERSE PROBLEMS, 2021, 37 (07)
  • [33] A Homotopy Alternating Direction Method of Multipliers for Linearly Constrained Separable Convex Optimization
    Yang J.
    Dai Y.-Q.
    Peng Z.
    Zhuang J.-P.
    Zhu W.-X.
    Journal of the Operations Research Society of China, 2017, 5 (2) : 271 - 290
  • [34] An Adaptive Alternating Direction Method of Multipliers
    Bartz, Sedi
    Campoy, Ruben
    Phan, Hung M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 1019 - 1055
  • [35] Emulation Alternating Direction Method of Multipliers
    Routray, Chinmay
    Sahoo, Soumya Ranjan
    2022 EIGHTH INDIAN CONTROL CONFERENCE, ICC, 2022, : 403 - 408
  • [36] An Adaptive Alternating Direction Method of Multipliers
    Sedi Bartz
    Rubén Campoy
    Hung M. Phan
    Journal of Optimization Theory and Applications, 2022, 195 : 1019 - 1055
  • [37] Training recurrent neural networks by sequential least squares and the alternating direction method of multipliers✩
    Bemporad, Alberto
    AUTOMATICA, 2023, 156
  • [38] A Note on the Alternating Direction Method of Multipliers
    Deren Han
    Xiaoming Yuan
    Journal of Optimization Theory and Applications, 2012, 155 : 227 - 238
  • [39] Alternating direction method of multipliers for linear hyperspectral unmixing
    Dai, Yu-Hong
    Xu, Fangfang
    Zhang, Liwei
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2023, 97 (03) : 289 - 310
  • [40] Dual Alternating Direction Method of Multipliers for Inverse Imaging
    Song, Li
    Ge, Zhou
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3295 - 3308