Curvature estimation from a volume-of-fluid indicator function for the simulation of surface tension and wetting with a free-surface lattice Boltzmann method

被引:22
作者
Bogner, Simon [1 ]
Ruede, Ulrich [1 ]
Harting, Jens [2 ,3 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Systemsimulat, Cauerstr 11, D-91054 Erlangen, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg IEK 11, Further Str 248, D-90429 Nurnberg, Germany
[3] Tech Univ Eindhoven, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
NUMERICAL-SIMULATION; BOUNDARY-CONDITIONS; FLOW SIMULATIONS; TRACKING; MODEL; EQUATION; INTERFACES;
D O I
10.1103/PhysRevE.93.043302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The free surface lattice Boltzmann method (FSLBM) is a combination of the hydrodynamic lattice Boltzmann method with a volume-of-fluid (VOF) interface capturing technique for the simulation of incompressible free surface flows. Capillary effects are modeled by extracting the curvature of the interface from the VOF indicator function and imposing a pressure jump at the free boundary. However, obtaining accurate curvature estimates from a VOF description can introduce significant errors. This article reports numerical results for three different surface tension models in standard test cases and compares the according errors in the velocity field (spurious currents). Furthermore, the FSLBM is shown to be suited to simulate wetting effects at solid boundaries. To this end, a new method is developed to represent wetting boundary conditions in a least-squares curvature reconstruction technique. The main limitations of the current FSLBM are analyzed and are found to be caused by its simplified advection scheme. Possible improvements are suggested.
引用
收藏
页数:12
相关论文
共 59 条
[1]   Height functions for applying contact angles to 2D VOF simulations [J].
Afkhami, S. ;
Bussmann, M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (04) :453-472
[2]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[3]   Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method [J].
Ammer, Regina ;
Markl, Matthias ;
Ljungblad, Ulric ;
Koerner, Carolin ;
Ruede, Ulrich .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) :318-330
[4]   Numerical simulation of adsorption and bubble interaction in protein foams using a lattice Boltzmann method [J].
Anderl, Daniela ;
Bauer, Martin ;
Rauh, Cornelia ;
Ruede, Ulrich ;
Delgado, Antonio .
FOOD & FUNCTION, 2014, 5 (04) :755-763
[5]   Free surface lattice Boltzmann with enhanced bubble model [J].
Anderl, Daniela ;
Bogner, Simon ;
Rauh, Cornelia ;
Ruede, Ulrich ;
Delgado, Antonio .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) :331-339
[6]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[7]   Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition [J].
Attar, Elham ;
Koerner, Carolin .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (01) :156-163
[8]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[9]   First steps in the spreading of a liquid droplet -: art. no. 016301 [J].
Biance, AL ;
Clanet, C ;
Quéré, D .
PHYSICAL REVIEW E, 2004, 69 (01) :4
[10]   Boundary conditions for free interfaces with the lattice Boltzmann method [J].
Bogner, Simon ;
Ammer, Regina ;
Ruede, Ulrich .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 :1-12