On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain

被引:26
作者
Ahmad, Bakhtiar [1 ]
Khan, Muhammad Ghaffar [2 ]
Frasin, Basem Aref [3 ]
Aouf, Mohamed Kamal [4 ]
Abdeljawad, Thabet [5 ,6 ,7 ]
Mashwani, Wali Khan [2 ]
Arif, Muhammad [1 ]
机构
[1] Abdul Wali Khan Univ Mardan, Mardan 23200, Pakistan
[2] Kohat Univ Sci & Technol, Inst Numer Sci, Kohat, Pakistan
[3] AL AL Bayt Univ Mafraq, Dept Math, Fac Sci, Mafraq, Jordan
[4] Fac Sci, Dept Math, Mansoura 35516, Egypt
[5] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[6] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[7] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
关键词
meromorphic functions; q-calculus; lemniscate of Bernoulli; Janowski functions; ANALYTIC-FUNCTIONS; CONVEX FUNCTIONS; Q-STARLIKE; SUBORDINATION;
D O I
10.3934/math.2021185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Utilizing the concepts from q-calculus in the field of geometric function theory, we introduce a subclass of p-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegofor this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions.
引用
收藏
页码:3037 / 3052
页数:16
相关论文
共 36 条
[1]  
Ademogullari K., 2016, Nonlinear Anal. Differ. Equ., V4, P283
[2]   Some Subordination Results on q-Analogue of Ruscheweyh Differential Operator [J].
Aldweby, Huda ;
Darus, Maslina .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[3]   DIFFERENTIAL SUBORDINATION FOR FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI [J].
Ali, Rosihan M. ;
Cho, Nak Eun ;
Ravichandran, V. ;
Kumar, S. Sivaprasad .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03) :1017-1026
[4]  
Anastassiou GA, 2006, J KOREAN MATH SOC, V43, P425
[5]  
[Anonymous], 1971, Ann. Polon. Math., DOI DOI 10.4064/AP-23-2-159-177
[6]  
[Anonymous], 2014, Abstract and Applied Analysis
[7]  
Aral A, 2006, J COMPUT ANAL APPL, V8, P249
[8]   Generalized q-Baskakov operators [J].
Aral, Ali ;
Gupta, Vijay .
MATHEMATICA SLOVACA, 2011, 61 (04) :619-634
[9]  
Aral A, 2009, DEMONSTR MATH, V42, P109
[10]   Some Janowski Type Harmonic q-Starlike Functions Associated with Symmetrical Points [J].
Arif, Muhammad ;
Barkub, Omar ;
Srivastava, Hari Mohan ;
Abdullah, Saleem ;
Khan, Sher Afzal .
MATHEMATICS, 2020, 8 (04)