Optimal control of a nutrient-phytoplankton-zooplankton-fish system

被引:57
作者
Garvie, Marcus R. [1 ]
Trenchea, Catalin
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
chaos; optimal control; biomanipulation; predator-prey interaction; finite element method;
D O I
10.1137/050645415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the mathematical formulation, analysis, and numerical solution of an optimal control problem for a nonlinear " nutrient- phytoplankton- zooplankton-.fish" reaction- di.ffusion system. We study the existence of optimal solutions, derive an optimality system, and determine optimal solutions. In the original spatially homogeneous formulation [ M. Scheffer, Oikos, 62 ( 1991), pp. 271 - 282] the dynamics of plankton were investigated as a function of parameters for nutrient levels and.fish predation rate on zooplankton. In our paper the model is spatially extended and the parameter for. fish predation treated as a multiplicative control variable. The model has implications for the biomanipulation of food- webs in eutrophic lakes to help improve water quality. In order to illustrate the control of irregular spatiotemporal dynamics of plankton in the model we implement a semi- implicit ( in time). finite element method with " mass lumping" and present the results of numerical experiments in two space dimensions.
引用
收藏
页码:775 / 791
页数:17
相关论文
共 51 条
[1]  
ANITA S, 1990, J MATH ANAL APPL, V152, P176, DOI 10.1016/0022-247X(90)90098-Z
[2]  
ANITA S, 2000, AN STIINT U AL SUZA, V46, P157
[3]  
Apreutesei N., 1998, Buletinul Institutului Politehnic din Iasi, Sectia I, V44, P31
[4]  
BALL J, 1977, Q J MATH OXFORD, V2, P473
[5]   Experiences with a space-time multigrid method for the optimal control of a chemical turbulence model [J].
Borzì, A ;
Griesse, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (8-9) :879-885
[6]   BIOLOGICAL-CONTROL OF EUTROPHICATION IN LAKES [J].
CARPENTER, SR ;
CHRISTENSEN, DL ;
COLE, JJ ;
COTTINGHAM, KL ;
HE, X ;
HODGSON, JR ;
KITCHELL, JF ;
KNIGHT, SE ;
PACE, ML ;
POST, DM ;
SCHINDLER, DE ;
VOICHICK, N .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (03) :784-786
[7]   Optimal control problems for stochastic reaction-diffusion systems with non-Lipschitz coefficients [J].
Cerrai, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 39 (06) :1779-1816
[8]  
[陈任昭 Chen Renzhao], 2002, [系统科学与数学, Journal of Systems Science and Mathematical Sciences], V22, P1
[9]   ROTATING SPIRAL WAVE SOLUTIONS OF REACTION-DIFFUSION EQUATIONS [J].
COHEN, DS ;
NEU, JC ;
ROSALES, RR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (03) :536-547
[10]  
DIEUDONNE J, 1960, PURE APPL MATH