A formula for a doubly refined enumeration of alternating sign matrices

被引:8
作者
Karklinsky, Matan [1 ]
Romik, Dan [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
Alternating sign matrix; Square ice; Six-vertex model; Enumerative combinatorics;
D O I
10.1016/j.aam.2009.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zeilberger (1996) [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey (1983) [9], for the number of alternating sign matrices with given top row. Stroganov (2006) [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik (2009) [7] considered a different kind of "doubly-refined enumeration" where one counts alternating sign matrices with given top two rows, and obtained partial results on this enumeration. In this paper we continue the study of the doubly-refined enumeration with respect to the top two rows, and use Stroganov's formula to prove an explicit formula for these doubly-refined enumeration numbers. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1996, New York J. Math.
[2]  
Bogoliubov N M, 1997, QUANTUM INVERSE SCAT
[3]  
Bressoud D. M., 1999, PROOFS CONFIRMATIONS
[4]   On two-point boundary correlations in the six-vertex model with domain wall boundary conditions [J].
Colomo, F ;
Pronko, AG .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :163-183
[5]  
FISCHER I, ARXIV09070401V1
[7]   The number of monotone triangles with prescribed bottom row [J].
Fischer, Ilse .
ADVANCES IN APPLIED MATHEMATICS, 2006, 37 (02) :249-267
[8]   More refined enumerations of alternating sign matrices [J].
Fischer, Ilse ;
Romik, Dan .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :2004-2035
[9]  
KUPERBERG G, 1996, INT MATH RES NOTICES, P139
[10]   ALTERNATING SIGN MATRICES AND DESCENDING PLANE PARTITIONS [J].
MILLS, WH ;
ROBBINS, DP ;
RUMSEY, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 34 (03) :340-359