Engineering Polymerases for New Functions

被引:31
作者
Coulther, Timothy A. [1 ]
Stern, Hannah R. [1 ]
Beuning, Penny J. [1 ]
机构
[1] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
AQUATICUS DNA-POLYMERASE; HOT START; FAMILY; PCR; AMPLIFICATION; REPLICATION; MUTATIONS; EVOLUTION; PROCESSIVITY; RESISTANCE;
D O I
10.1016/j.tibtech.2019.03.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
DNA polymerases are critical tools in biotechnology, enabling efficient and accurate amplification of DNA templates, yet many desired functions are not readily available in natural DNA polymerases. New or improved functions can be engineered in DNA polymerases by mutagenesis or through the creation of protein chimeras. Engineering often necessitates the development of new techniques, such as selections in water-in-oil emulsions that connect genotype to phenotype and allow more flexibility in engineering than phage display. Engineering efforts have led to DNA polymerases that can withstand extreme conditions or the presence of inhibitors, as well as polymerases with the ability to copy modified DNA templates. In this review we discuss polymerases for biotechnology that have been reported along with tools to enable further development.
引用
收藏
页码:1091 / 1103
页数:13
相关论文
共 81 条
[41]   A polymerase engineered for bisulfite sequencing [J].
Millar, Doug ;
Christova, Yonka ;
Holliger, Philipp .
NUCLEIC ACIDS RESEARCH, 2015, 43 (22)
[42]   Evolution of a Thermophilic Strand-Displacing Polymerase Using High-Temperature Isothermal Compartmentalized Self-Replication [J].
Milligan, John N. ;
Shroff, Raghav ;
Garry, Daniel J. ;
Ellington, Andrew D. .
BIOCHEMISTRY, 2018, 57 (31) :4607-4619
[43]   A Processive Protein Chimera Introduces Mutations across Defined DNA Regions In Vivo [J].
Moore, Christopher L. ;
Papa, Louis J., III ;
Shoulders, Matthew D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (37) :11560-11564
[44]   Comparison of DNA polymerases for improved forensic analysis of challenging samples [J].
Nilsson, Martina ;
Granemo, Joakim ;
Bus, Magdalena M. ;
Havsjo, Mikael ;
Allen, Marie .
FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2016, 24 :55-59
[45]   Derivatives of Bst-like Gss-polymerase with improved processivity and inhibitor tolerance [J].
Oscorbin, Igor P. ;
Belousova, Ekaterina A. ;
Boyarskikh, Ulyana A. ;
Zakabunin, Aleksandr I. ;
Khrapov, Evgeny A. ;
Filipenko, Maksim L. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (16) :9595-9610
[46]   De novo DNA synthesis using polymerase-nucleotide conjugates [J].
Palluk, Sebastian ;
Arlow, Daniel H. ;
de Rond, Tristan ;
Barthel, Sebastian ;
Kang, Justine S. ;
Bector, Rathin ;
Baghdassarian, Hratch M. ;
Truong, Alisa N. ;
Kim, Peter W. ;
Singh, Anup K. ;
Hillson, Nathan J. ;
Keasling, Jay D. .
NATURE BIOTECHNOLOGY, 2018, 36 (07) :645-+
[47]  
Paul N, 2010, METHODS MOL BIOL, V630, P301, DOI 10.1007/978-1-60761-629-0_19
[48]   Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases [J].
Pavlov, AR ;
Belova, GI ;
Kozyavkin, SA ;
Slesarev, AI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (21) :13510-13515
[49]   A thermostable D-polymerase for mirror-image PCR [J].
Pech, Andreas ;
Achenbach, John ;
Jahnz, Michael ;
Schuelzchen, Simone ;
Jarosch, Florian ;
Bordusa, Frank ;
Klussmann, Sven .
NUCLEIC ACIDS RESEARCH, 2017, 45 (07) :3997-4005
[50]  
Peplow M, 2016, NATURE, V533, P303, DOI 10.1038/nature.2016.19918