Engineering Polymerases for New Functions

被引:29
作者
Coulther, Timothy A. [1 ]
Stern, Hannah R. [1 ]
Beuning, Penny J. [1 ]
机构
[1] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
AQUATICUS DNA-POLYMERASE; HOT START; FAMILY; PCR; AMPLIFICATION; REPLICATION; MUTATIONS; EVOLUTION; PROCESSIVITY; RESISTANCE;
D O I
10.1016/j.tibtech.2019.03.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
DNA polymerases are critical tools in biotechnology, enabling efficient and accurate amplification of DNA templates, yet many desired functions are not readily available in natural DNA polymerases. New or improved functions can be engineered in DNA polymerases by mutagenesis or through the creation of protein chimeras. Engineering often necessitates the development of new techniques, such as selections in water-in-oil emulsions that connect genotype to phenotype and allow more flexibility in engineering than phage display. Engineering efforts have led to DNA polymerases that can withstand extreme conditions or the presence of inhibitors, as well as polymerases with the ability to copy modified DNA templates. In this review we discuss polymerases for biotechnology that have been reported along with tools to enable further development.
引用
收藏
页码:1091 / 1103
页数:13
相关论文
共 81 条
  • [1] Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase
    Agudo, Ruben
    Calvo, Patricia A.
    Martinez-Jimenez, Maria I.
    Blanco, Luis
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (15) : 9046 - 9058
  • [2] Mutually Orthogonal DNA Replication Systems In Vivo
    Arzumanyan, Garri A.
    Gabriel, Kristin N.
    Ravikumar, Arjun
    Javanpour, Alex A.
    Liu, Chang C.
    [J]. ACS SYNTHETIC BIOLOGY, 2018, 7 (07): : 1722 - 1729
  • [3] Engineering of a DNA Polymerase for Direct m6A Sequencing
    Aschenbrenner, Joos
    Werner, Stephan
    Marchand, Virginie
    Adam, Martina
    Motorin, Yuri
    Helm, Mark
    Marx, Andreas
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (02) : 417 - 421
  • [4] DNA polymerases and biotechnological applications
    Aschenbrenner, Joos
    Marx, Andreas
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2017, 48 : 187 - 195
  • [5] Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase
    Aschenbrenner, Joos
    Marx, Andreas
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (08) : 3495 - 3502
  • [6] Direct Sensing of 5-Methylcytosine by Polymerase Chain Reaction
    Aschenbrenner, Joos
    Drum, Matthias
    Topal, Huesnue
    Wieland, Markus
    Marx, Andreas
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (31) : 8154 - 8158
  • [7] Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication
    Aye, Seaim Lwin
    Fujiwara, Kei
    Ueki, Asuka
    Doi, Nobuhide
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 499 (02) : 170 - 176
  • [8] Molecular breeding of polymerases for resistance to environmental inhibitors
    Baar, Claudia
    d'Abbadie, Marc
    Vaisman, Alexandra
    Arana, Mercedes E.
    Hofreiter, Michael
    Woodgate, Roger
    Kunkel, Thomas A.
    Holliger, Philipp
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 (08) : e51
  • [9] Modulating the pKa of a Tyrosine in KlenTaq DNA Polymerase that Is Crucial for Abasic Site Bypass by in Vivo Incorporation of a Non-canonical Amino Acid
    Blatter, Nina
    Prokup, Alexander
    Deiters, Alexander
    Marx, Andreas
    [J]. CHEMBIOCHEM, 2014, 15 (12) : 1735 - 1737
  • [10] Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection
    Chen, Fei
    Gaucher, Eric A.
    Leal, Nicole A.
    Hutter, Daniel
    Havemann, Stephanie A.
    Govindarajan, Sridhar
    Ortlund, Eric A.
    Benner, Steven A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (05) : 1948 - 1953