Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum aestivum L.)

被引:30
|
作者
Yue, Wenjie [1 ,2 ]
Nie, Xiaojun [1 ,2 ]
Cui, Licao [1 ,2 ]
Zhi, Yongqiang [1 ,2 ]
Zhang, Ting [1 ,2 ]
Du, Xianghong [1 ,2 ]
Song, Weining [1 ,2 ,3 ]
机构
[1] Northwest A&F Univ, Coll Agron, State Key Lab Crop Stress Biol Arid Areas, Yangling, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Yangling Branch, China Wheat Improvement Ctr, Yangling, Shaanxi, Peoples R China
[3] Northwest A&F Univ, Australia China Joint Res Ctr Abiot & Biot Stress, Yangling, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Abiotic stress; Autophagy-associated gene family; Expression profiles; Interaction network; Wheat; UBIQUITIN-LIKE ATG8; NITROGEN STARVATION; STRESS RESPONSES; NUTRIENT STRESS; ARABIDOPSIS; IDENTIFICATION; SENESCENCE; PROTEINS; HOMOLOGS; TOLERANCE;
D O I
10.1016/j.jplph.2018.06.012
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Autophagy, a highly conserved intracellular degradation system, is regarded to be responsible for self-defense and protect cells from abiotic stress. Extensive studies have demonstrated that autophagy plays a crucial role in regulating plant growth and development as well as in response to diverse stresses. However, little is known about autophagy-associated genes (ATGs) in wheat, especially those involved in the regulatory network of stress processes. In this study, a total of 108 putative wheat ATGs (TaATG) were obtained based on a genome-wide search approach. Phylogenetic analysis classified them into 13 subfamilies, of which the TaAtg16 subfamily consisted of 29 members, ranking it the largest subfamily. The conserved motif compositions as well as their exon-intron structures were systematically analyzed and strongly supported the classification. The homoeologous genes tended to have similar gene features during wheat polyploidization. Furthermore, a total of 114 putative cis-elements were found, and those related to hormone, stress, and light responsiveness were abundantly presented in the promoter regions. Co-expression network analysis revealed that orthologous VAMP727 was the hub node of the whole network, and complex interactions were also found. Finally, the expression profiles of TaATGs among different tissues and under abiotic stresses were investigated to identify tissue-specific or stress-responsive candidates, and then 14 were validated by wet-lab analysis. Results showed that the TaAtg8 subfamily played a crucial role in tissue autophagy and stress defense, which could be considered as processes that are candidates for further functional study. This was the first study to comprehensively investigate the ATG family in wheat, which ultimately provided important clues for further functional analysis and also took a step toward uncovering the evolutionary mechanism of ATG genes in wheat and beyond.
引用
收藏
页码:7 / 21
页数:15
相关论文
共 50 条
  • [1] Genome-Wide Analysis and Evolutionary Perspective of the Cytokinin Dehydrogenase Gene Family in Wheat (Triticum aestivum L.)
    Jain, Priyanka
    Singh, Ankita
    Iquebal, Mir Asif
    Jaiswal, Sarika
    Kumar, Sundeep
    Kumar, Dinesh
    Rai, Anil
    FRONTIERS IN GENETICS, 2022, 13
  • [2] Genome-Wide Identification and Analysis of MAPK and MAPKK Gene Families in Bread Wheat (Triticum aestivum L.)
    Zhan, Haoshuang
    Yue, Hong
    Zhao, Xian
    Wang, Meng
    Song, Weining
    Nie, Xiaojun
    GENES, 2017, 8 (10)
  • [3] Genome-Wide Identification and Analysis of GHMP Kinase Gene Superfamily in Bread Wheat (Triticum aestivum L.)
    Thakur, Neha
    Flowerika
    Singh, Pankaj K.
    Kaur, Karambir
    Tiwari, Siddharth
    PLANT MOLECULAR BIOLOGY REPORTER, 2021, 39 (02) : 455 - 470
  • [4] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Zhang, Peipei
    Zhang, Linghui
    Chen, Tao
    Jing, Fanli
    Liu, Yuan
    Ma, Jingfu
    Tian, Tian
    Yang, Delong
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (04) : 2899 - 2913
  • [5] Genome-wide identification and characterization of UBP gene family in wheat (Triticum aestivum L. )
    Xu, Miaoze
    Jin, Peng
    Liu, Tingting
    Gao, Shiqi
    Zhang, Tianye
    Zhang, Fan
    Han, Xiaolei
    He, Long
    Chen, Jianping
    Yang, Jian
    PEERJ, 2021, 9
  • [6] Genome-Wide Identification and Expression Analysis of the HD-Zip Gene Family in Wheat (Triticum aestivum L.)
    Yue, Hong
    Shu, Duntao
    Wang, Meng
    Xing, Guangwei
    Zhan, Haoshuang
    Du, Xianghong
    Song, Weining
    Nie, Xiaojun
    GENES, 2018, 9 (02)
  • [7] Genome-Wide Identification and Characterization of the Cystatin Gene Family in Bread Wheat (Triticum aestivum L.)
    He, Long
    Chen, Xuan
    Xu, Miaoze
    Liu, Tingting
    Zhang, Tianye
    Li, Juan
    Yang, Jian
    Chen, Jianping
    Zhong, Kaili
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [8] Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat (Triticum aestivum L.)
    Wang, Xianguo
    Liu, Yang
    Li, Zheng
    Gao, Xiang
    Dong, Jian
    Zhang, Jiacheng
    Zhang, Longlong
    Thomashow, Linda S.
    Weller, David M.
    Yang, Mingming
    PLANTS-BASEL, 2020, 9 (07): : 1 - 20
  • [9] Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.)
    Wang, Meng
    Yue, Hong
    Feng, Kewei
    Deng, Pingchuan
    Song, Weining
    Nie, Xiaojun
    BMC GENOMICS, 2016, 17
  • [10] Genome-wide analysis of the cellulose synthase-like (Csl) gene family in bread wheat (Triticum aestivum L.)
    Kaur, Simerjeet
    Dhugga, Kanwarpal S.
    Beech, Robin
    Singh, Jaswinder
    BMC PLANT BIOLOGY, 2017, 17