ANALYSIS OF THE EFFECTS OF A FISSURE FOR A NON-NEWTONIAN FLUID FLOW IN A POROUS MEDIUM

被引:7
作者
Anguiano, Maria [1 ]
Javier Suarez-Grau, Francisco [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, POB 1160, Seville 41080, Spain
[2] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, POB 1160, Seville 41012, Spain
关键词
non-Newtonian flow; Stokes equation; Darcy's law; porous medium; fissure; THIN FISSURE; HOMOGENIZATION; CONVERGENCE;
D O I
10.4310/CMS.2018.v16.n1.a13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the solution of a non-Newtonian flow in a porous medium which characteristic size of the pores epsilon and containing a fissure of width eta epsilon. flow is described by the incompressible Stokes system with a nonlinear viscosity, being a power of the shear rate (power law) of flow index 1 < r < +infinity. We consider the limit when size of the pores tends to zero and we obtain different models depending on the magnitude eta epsilon with respect to epsilon.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 15 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
Allaire G., 1989, Asymptot. Anal, V2, P203, DOI [10.3233/ASY-1989-2302, DOI 10.3233/ASY-1989-2302]
[3]   Homogenization of a polymer flow through a porous medium [J].
Bourgeat, A ;
Mikelic, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (07) :1221-1253
[4]  
BOURGEAT A, 1993, INT S NUM M, V114, P25
[5]   Filtration law for polymer flow through porous media [J].
Bourgeat, A ;
Gipouloux, O ;
Marusic-Paloka, E .
MULTISCALE MODELING & SIMULATION, 2003, 1 (03) :432-457
[6]  
BOURGEAT A, 1995, ASYMPTOTIC ANAL, V11, P241
[7]  
Bourgeat A., 1991, 2 C FRANC CHIL MATH
[8]  
CIARLET PG, 1987, CR ACAD SCI I-MATH, V305, P55
[9]  
Mikelic A., 1995, Mathematical Modelling and Numerical Analysis, V29, P3