Energy Cascade Rate Measured in a Collisionless Space Plasma with MMS Data and Compressible Hall Magnetohydrodynamic Turbulence Theory

被引:60
作者
Andres, N. [1 ,2 ,3 ]
Sahraoui, F. [1 ]
Galtier, S. [1 ,4 ]
Hadid, L. Z. [5 ]
Ferrand, R. [1 ]
Huang, S. Y. [6 ]
机构
[1] Univ Paris Sud, Sorbonne Univ, CNRS, Ecole Polytech,Observ Paris,Lab Phys Plasmas, F-91128 Palaiseau, France
[2] UBA, CONICET, Inst Astron & Fis Espacio, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[3] UBA, Fac Ciencias Exactas & Nat, Dept Fis, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[4] IUF, F-2201 Paris, France
[5] Estec, European Space Agcy, NL-75231 Noordwijk, Netherlands
[6] Wuhan Univ, Sch Elect & Informat, Wuhan 430072, Hubei, Peoples R China
关键词
SCALING LAWS;
D O I
10.1103/PhysRevLett.123.245101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The first complete estimation of the compressible energy cascade rate vertical bar epsilon(C)vertical bar at magnetohydrodynamic (MHD) and subion scales is obtained in Earth's magnetosheath using Magnetospheric MultiScale spacecraft data and an exact law derived recently for compressible Hall MHD turbulence. A multispwecraft technique is used to compute the velocity and magnetic gradients, and then all the correlation functions involved in the exact relation. It is shown that when the density fluctuations are relatively small,vertical bar epsilon(C)vertical bar identifies well with its incompressible analog vertical bar epsilon(I)vertical bar ; at MHD scales but becomes much larger than led at subion scales. For larger density fluctuations, vertical bar epsilon(C)vertical bar is larger than vertical bar epsilon(I)vertical bar at every scale with a value significantly higher than for smaller density fluctuations. Our study reveals also that for both small and large density fluctuations, the nonflux terms remain always negligible with respect to the flux terms and that the major contribution to vertical bar epsilon(C)vertical bar at subion scales comes from the compressible Hall flux.
引用
收藏
页数:6
相关论文
共 57 条
[1]   Cascades and transitions in turbulent flows [J].
Alexakis, A. ;
Biferale, L. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2018, 767 :1-101
[2]   Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence [J].
Andres, N. ;
Sahraoui, F. ;
Galtier, S. ;
Hadid, L. Z. ;
Dmitruk, P. ;
Mininni, P. D. .
JOURNAL OF PLASMA PHYSICS, 2018, 84 (04)
[3]   Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence [J].
Andres, N. ;
Galtier, S. ;
Sahraoui, F. .
PHYSICAL REVIEW E, 2018, 97 (01)
[4]   Alternative derivation of exact law for compressible and isothermal magnetohydrodynamics turbulence [J].
Andres, N. ;
Sahraoui, F. .
PHYSICAL REVIEW E, 2017, 96 (05)
[5]  
[Anonymous], 2016, INTRO MODERN MAGNETO
[6]  
AUSTER HU, 2008, THEMIS MISSION SPACE, V141, P235, DOI DOI 10.1007/S11214-008-9365-9
[7]   SCALING OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE IN THE FAST SOLAR WIND [J].
Banerjee, S. ;
Hadid, L. Z. ;
Sahraoui, F. ;
Galtier, S. .
ASTROPHYSICAL JOURNAL LETTERS, 2016, 829 (02)
[8]   Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids [J].
Banerjee, Supratik ;
Kritsuk, Alexei G. .
PHYSICAL REVIEW E, 2018, 97 (02)
[9]   Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence [J].
Banerjee, Supratik ;
Galtier, Sebastien .
PHYSICAL REVIEW E, 2013, 87 (01)
[10]  
Batchelor G. K., 1953, THEORY HOMOGENEUS TU