Iron addition to soil specifically stabilized lignin

被引:66
作者
Hall, Steven J. [1 ]
Silver, Whendee L. [2 ]
Timokhin, Vitally. I. [3 ]
Hammel, Kenneth E. [4 ,5 ]
机构
[1] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA
[2] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[3] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53706 USA
[4] US Forest Serv, Madison, WI 53726 USA
[5] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Carbon stabilization; Iron; Lignin; Recalcitrance; Redox; Soil organic matter; ORGANIC-MATTER FRACTIONS; DECOMPOSITION; TURNOVER; CARBON; DEGRADATION; GOETHITE; DYNAMICS; FIELD; NMR;
D O I
10.1016/j.soilbio.2016.04.010
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The importance of lignin as a recalcitrant constituent of soil organic matter (SOM) remains contested. Associations with iron (Fe) oxides have been proposed to specifically protect lignin from decomposition, but impacts of Fe-lignin interactions on mineralization rates remain unclear. Oxygen (O-2) fluctuations characteristic of humid tropical soils drive reductive Fe dissolution and precipitation, facilitating multiple types of Fe-lignin interactions that could variably decompose or protect lignin. We tested impacts of Fe addition on C-13 methoxyl-labeled lignin mineralization in soils that were exposed to static or fluctuating O-2. Iron addition suppressed lignin mineralization to 21% of controls, regardless of O-2 availability. However, Fe addition had no effect on soil CO2 production, implying that Fe oxides specifically protected lignin methoxyls but not bulk SOM. Iron oxide-lignin interactions represent a specific mechanism for lignin stabilization, linking SOM biochemical composition to turnover via geochemistry. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 98
页数:4
相关论文
共 33 条
[1]   Lignin degradation during a laboratory incubation followed by 13C isotope analysis [J].
Bahri, H. ;
Rasse, D. P. ;
Rumpel, C. ;
Dignac, M. -F. ;
Bardoux, G. ;
Mariotti, A. .
SOIL BIOLOGY & BIOCHEMISTRY, 2008, 40 (07) :1916-1922
[2]  
Bollag J.-M., 1997, V63, P237
[3]   Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces [J].
Chorover, J ;
Amistadi, MK .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (01) :95-109
[4]  
Crawford RL, 1981, LIGNIN BIODEGRADATIO
[5]   Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France) [J].
Dignac, MF ;
Bahri, H ;
Rumpel, C ;
Rasse, DP ;
Bardoux, G ;
Balesdent, J ;
Girardin, C ;
Chenu, C ;
Mariotti, A .
GEODERMA, 2005, 128 (1-2) :3-17
[6]   Tropical forest soil microbial communities couple iron and carbon biogeochemistry [J].
Dubinsky, Eric A. ;
Silver, Whendee L. ;
Firestone, Mary K. .
ECOLOGY, 2010, 91 (09) :2604-2612
[7]  
Dunning JC, 1998, APPL ENVIRON MICROB, V64, P27
[8]   Biodegradation of ferrihydrite-associated organic matter [J].
Eusterhues, Karin ;
Neidhardt, Julia ;
Haedrich, Anke ;
Kuesel, Kirsten ;
Totsche, Kai Uwe .
BIOGEOCHEMISTRY, 2014, 119 (1-3) :45-50
[9]  
Gleixner G, 1999, RAPID COMMUN MASS SP, V13, P1278, DOI 10.1002/(SICI)1097-0231(19990715)13:13<1278::AID-RCM649>3.0.CO
[10]  
2-N