On the multi-annual potential predictability of the Arctic Ocean climate state in the INM RAS climate model

被引:1
作者
Volodin, Evgeny M. [1 ]
Vorobyeva, Vasilisa V. [1 ,2 ]
机构
[1] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
[2] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
基金
俄罗斯科学基金会;
关键词
Decadal forecast; Arctic Ocean; climate model; SEA-ICE;
D O I
10.1515/rnam-2022-0010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Idealized numerical experiments with the INM RAS climate model are used to study the potential predictability of the temperature in the upper 300-meter layer of the Arctic Ocean. It is shown that the heat content can be predictable for up to 4-6 years. Positive anomalies of the temperature and salinity are preceded for several years by a state in which the influx of Atlantic water into the Arctic Ocean exceeds the average value. Surface fields, including temperature, salinity, concentration and mass of ice, are less predictable than the heat content in the layer of 0-300 meters.
引用
收藏
页码:119 / 129
页数:11
相关论文
共 8 条
  • [1] Skillful prediction of northern climate provided by the ocean (vol 8, 15875, 2017)
    Arthun, Marius
    Eldevik, Tor
    Viste, Ellen
    Drange, Helge
    Furevik, Tore
    Johnson, Helen L.
    Keenlyside, Noel S.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] On Anomalous Ocean Heat Transport toward the Arctic and Associated Climate Predictability
    Arthun, Marius
    Eldevik, Tor
    [J]. JOURNAL OF CLIMATE, 2016, 29 (02) : 689 - 704
  • [3] Seasonal to decadal predictions of regional Arctic sea ice by assimilating sea surface temperature in the Norwegian Climate Prediction Model
    Dai, Panxi
    Gao, Yongqi
    Counillon, Francois
    Wang, Yiguo
    Kimmritz, Madlen
    Langehaug, Helene R.
    [J]. CLIMATE DYNAMICS, 2020, 54 (9-10) : 3863 - 3878
  • [4] Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
    Eyring, Veronika
    Bony, Sandrine
    Meehl, Gerald A.
    Senior, Catherine A.
    Stevens, Bjorn
    Stouffer, Ronald J.
    Taylor, Karl E.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) : 1937 - 1958
  • [5] Interannual predictability of Arctic sea ice in a global climate model: regional contrasts and temporal evolution
    Germe, Agathe
    Chevallier, Matthieu
    Salas y Melia, David
    Sanchez-Gomez, Emilia
    Cassou, Christophe
    [J]. CLIMATE DYNAMICS, 2014, 43 (9-10) : 2519 - 2538
  • [6] Robust skill of decadal climate predictions
    Smith, D. M.
    Eade, R.
    Scaife, A. A.
    Caron, L-P
    Danabasoglu, G.
    DelSole, T. M.
    Delworth, T.
    Doblas-Reyes, F. J.
    Dunstone, N. J.
    Hermanson, L.
    Kharin, V
    Kimoto, M.
    Merryfield, W. J.
    Mochizuki, T.
    Mueller, W. A.
    Pohlmann, H.
    Yeager, S.
    Yang, X.
    [J]. NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2019, 2
  • [7] Simulation of the modern climate using the INM-CM48 climate model
    Volodin, Evgenii M.
    Mortikov, Evgeny V.
    Kostrykin, Sergey V.
    Galin, Vener Ya.
    Lykossov, Vasily N.
    Gritsun, Andrey S.
    Diansky, Nikolay A.
    Gusev, Anatoly V.
    Iakovlev, Nikolay G.
    Shestakova, Anna A.
    Emelina, Svetlana V.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2018, 33 (06) : 367 - 374
  • [8] The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment
    Zuo, Hao
    Balmaseda, Magdalena Alonso
    Tietsche, Steffen
    Mogensen, Kristian
    Mayer, Michael
    [J]. OCEAN SCIENCE, 2019, 15 (03) : 779 - 808