On Locating-Chromatic Number for Graphs with Dominant Vertices

被引:8
作者
Welyyanti, Des [1 ,2 ]
Baskoro, Edy Tri [1 ]
Simanjuntak, Rinovia [1 ]
Uttunggadewa, Saladin [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Div, Jl Ganesa 10, Bandung 40132, Indonesia
[2] Andalas Unvers, Fac Math & Nat Sci, Limau Manis, Padang, Indonesia
来源
2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY | 2015年 / 74卷
关键词
locating-chromatic number; dominant vertex; coloring; color;
D O I
10.1016/j.procs.2015.12.081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let c be a k-coloring of a (not necessary connected) graph H. Let Pi = {C-1, C-2, ..., C-k} be the partition of V(H) induced by c, where C-i is partition class receiving color i. The color code c(Pi) (v) of a vertex v epsilon H is the ordered k-tuple (d(v, C-1), d(v, C-2), ..., d(v, C-k)), where d(v, C-i) = min{d(v, x)| x epsilon C-i} for all i epsilon [1, k]. If all vertices of H have distinct color codes, then c is called a locating k-coloring of H. The locating-chromatic number of H, denoted by chi(L)' (H), is the smallest k such that H admits a locatingcoloring with k colors. If there is no integer k satisfying the above conditions, then we say that chi(L)' (H) = infinity. Note that if H is a connected graph, then chi(L)' (H) = chi(L) (H). In this paper, we provide upper bounds for the locating-chromatic numbers of connected graphs obtained from disconnected graphs where each component contains a single dominant vertex. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:89 / 92
页数:4
相关论文
共 11 条
[1]   Characterizing all graphs containing cycles with locating-chromatic number 3 [J].
Asmiati ;
Baskoro, E. T. .
5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 :351-357
[2]  
Asmiati Assiyatun H, 2011, ITB J SCI A, V43A, P1
[3]  
Asmiati E. T., 2012, FAR E J MATH SCI, V63, P11
[4]   Characterizing all trees with locating-chromatic number 3 [J].
Baskoro, Edy Tri ;
Asmiati .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2013, 1 (02) :109-117
[5]   Graphs of order n with locating-chromatic number n-1 [J].
Chartrand, G ;
Erwin, D ;
Henning, MA ;
Slater, PJ ;
Zhang, P .
DISCRETE MATHEMATICS, 2003, 269 (1-3) :65-79
[6]  
Chartrand G., 2002, Bull. Inst. Combin. Appl., V36, P89
[7]  
Chartrand G, 1993, Applied and Algorithmic Graph Theory
[8]  
Syofyan DK, 2013, AKCE INT J GRAPHS CO, V10, P245
[9]  
Welyyanti D, AIP UNPUB
[10]  
Welyyanti D., 2014, Far East J. Math. Sci., V94, P169