Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs

被引:1
作者
Baillot, Patrick [1 ]
Barthe, Gilles [2 ]
Dal Lago, Ugo [3 ,4 ]
机构
[1] Univ Lyon, CNRS, EnsL, UCBL,LIP, F-69342 Lyon 07, France
[2] IMDEA Software Inst, Madrid, Spain
[3] Univ Bologna, Bologna, Italy
[4] INRIA, Sophia Antipolis, France
关键词
Implicit computational complexity; Complexity analysis; Linear dependent types; Cryptographic proofs; DESIGN;
D O I
10.1007/s10817-019-09530-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define a call-by-value variant of Godel's system T with references, and equip it with a linear dependent type and effect system, called dlT, that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in the sense that it over-approximates the complexity of executing the programs on a variant of the CEK abstract machine. Moreover, we define a sound and complete type inference algorithm which critically exploits the subrecursive nature of dlT. Finally, we demonstrate the usefulness of dlT for analyzing the complexity of cryptographic reductions by providing an upper bound for the constructed adversary of the Goldreich-Levin theorem.
引用
收藏
页码:813 / 855
页数:43
相关论文
共 29 条
[1]   (LEFTMOST-OUTERMOST) BETA REDUCTION IS INVARIANT, INDEED [J].
Accattoli, Beniamino ;
Dal Lago, Ugo .
LOGICAL METHODS IN COMPUTER SCIENCE, 2016, 12 (01)
[2]  
Albert E, 2008, LECT NOTES COMPUT SC, V5382, P113, DOI 10.1007/978-3-540-92188-2_5
[3]  
[Anonymous], 1993, ACM CCS 1993, DOI DOI 10.1145/168588.168596
[4]  
[Anonymous], 2011, LOG METH COMPUT SCI
[5]   Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs [J].
Baillot, Patrick ;
Barthe, Gilles ;
Dal Lago, Ugo .
LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, (LPAR-20 2015), 2015, 9450 :203-218
[6]   Light types for polynomial time computation in lambda calculus [J].
Baillot, Patrick ;
Terui, Kazushige .
INFORMATION AND COMPUTATION, 2009, 207 (01) :41-62
[7]  
Barthe G, 2015, ACM SIGPLAN NOTICES, V50, P55, DOI [10.1145/10.1145/2676726.2677000, 10.1145/2775051.2677000]
[8]   Probabilistic Relational Verification for Cryptographic Implementations [J].
Barthe, Gilles ;
Fournet, Cedric ;
Gregoire, Benjamin ;
Strub, Pierre-Yves ;
Swamy, Nikhil ;
Zanella-Beguelin, Santiago .
ACM SIGPLAN NOTICES, 2014, 49 (01) :193-205
[9]  
Barthe G, 2011, LECT NOTES COMPUT SC, V6841, P71, DOI 10.1007/978-3-642-22792-9_5
[10]   Computational Indistinguishability Logic [J].
Barthe, Gilles ;
Daubignard, Marion ;
Kapron, Bruce ;
Lakhnech, Yassine .
PROCEEDINGS OF THE 17TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'10), 2010, :375-386