Three-Component Model-Based Decomposition for Polarimetric SAR Data

被引:248
|
作者
An, Wentao [1 ]
Cui, Yi [1 ]
Yang, Jian [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2010年 / 48卷 / 06期
基金
中国国家自然科学基金;
关键词
Freeman decomposition; incoherent polarimetric decomposition; radar polarimetry; synthetic aperture radar (SAR); SCATTERING MODEL; POLSAR; CLASSIFICATION;
D O I
10.1109/TGRS.2010.2041242
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An improved three-component decomposition for polarimetric synthetic aperture radar (SAR) data is proposed in this paper. The reasons for the emergence of negative powers in the Freeman decomposition have been analyzed, and three corresponding improvements are included in the proposed method. First, the deorientation process is applied to the coherency matrix before it is decomposed into three scattering components. Then, the coherency matrix with the maximal polarimetric entropy, i.e., the unitmatrix, is used as the new volume-scattering model instead of the original one adopted in the Freeman decomposition. A power constraint is also added to the proposed three-component decomposition. The E-SAR polarimetric data acquired over the Oberpfaffenhofen area in Germany are applied in the experiment. The results show that the pixels with negative powers are totally eliminated by the proposed decomposition, demonstrating the effectiveness of the new model.
引用
收藏
页码:2732 / 2739
页数:8
相关论文
共 50 条
  • [31] Model-Based Polarimetric SAR Speckle Filter
    Lopez-Martinez, Carlos
    Fabregas, Xavier
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11): : 3894 - 3907
  • [32] GENERAL POLARIMETRIC MODEL-BASED DECOMPOSITION FOR COHERENCY MATRIX
    Chen, Si-Wei
    Sato, Motoyuki
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 99 - 102
  • [33] Speckle filtering in polarimetric SAR data based on the subspace decomposition
    Gu, J
    Yang, J
    Zhang, H
    Peng, YN
    Wang, C
    Zhang, H
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08): : 1635 - 1641
  • [34] Generalized Polarimetric Entropy: Polarimetric Information Quantitative Analyses of Model-Based Incoherent Polarimetric Decomposition
    An, Wentao
    Lin, Mingsen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2041 - 2057
  • [35] Hybrid Three-Component Scattering Power Characterization From Polarimetric SAR Data Isolating Dominant Scattering Mechanisms
    Maurya, Himanshu
    Bhattacharya, Avik
    Mishra, Amit Kumar
    Panigrahi, Rajib Kumar
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Comparison of Model-Based Polarimetric Decomposition Algorithms
    Sato, Daisuke
    Watanabe, Takuma
    Yamada, Hiroyoshi
    Yamaguchi, Yoshio
    CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 346 - 349
  • [37] Four-component scattering model for polarimetric SAR image decomposition
    Yamaguchi, Y
    Moriyama, T
    Ishido, M
    Yamada, H
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (08): : 1699 - 1706
  • [38] Adaptive Model-Based Polarimetric Decomposition Using PolInSAR Coherence
    Chen, Si-Wei
    Wang, Xue-Song
    Li, Yong-Zhen
    Sato, Motoyuki
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1705 - 1718
  • [39] An Incoherent Decomposition Algorithm Based on Polarimetric Symmetry for Multilook Polarimetric SAR Data
    An, Wentao
    Lin, Mingsen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2383 - 2397
  • [40] The Effect of Topography on Target Decomposition of Polarimetric SAR Data
    Park, Sang-Eun
    REMOTE SENSING, 2015, 7 (05): : 4997 - 5011