On the Turan Number of Theta Graphs

被引:3
|
作者
Zhai, Mingqing [1 ]
Fang, Longfei [1 ]
Shu, Jinlong [2 ]
机构
[1] Chuzhou Univ, Sch Math & Finance, Chuzhou, Anhui, Peoples R China
[2] East China Normal Univ, Sch Data Sci & Engn, Shanghai, Peoples R China
关键词
Turan number; Extremal graph; Theta graph; PATHS;
D O I
10.1007/s00373-021-02342-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Turan number ex(n, H) is the maximum number of edges in any graph of order n that contains no copy of H as a subgraph. For any three positive integers p, q, r with p <= q <= r and q >= 2, let theta(p, q, r) denote the graph obtained from three internally disjoint paths with the same pair of endpoints, where the three paths are of lengths p, q, r, respectively. Let k = p + q + r - 1. In this paper, we obtain the exact value of ex(n,theta(p,q, r)) and characterize the unique extremal graph for n >= 9k(2) - 3k and any p, q, r with different parities. This extends a known result on odd cycles.
引用
收藏
页码:2155 / 2165
页数:11
相关论文
共 50 条
  • [21] The Turan number of k•Sl
    Li, Sha-Sha
    Yin, Jian-Hua
    Li, Jia-Yun
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [22] The Turan number of the square of a path
    Xiao, Chuanqi
    Katona, Gyula O. H.
    Xiao, Jimeng
    Zamora, Oscar
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 1 - 14
  • [23] The Lower and Upper Bounds of Turan Number for Odd Wheels
    Kim, Byeong Moon
    Song, Byung Chul
    Hwang, Woonjae
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 919 - 932
  • [24] An Extremal Property of Turan Graphs, II
    Tofts, Spencer N.
    JOURNAL OF GRAPH THEORY, 2014, 75 (03) : 275 - 283
  • [25] Edge maximal non-bipartite Hamiltonian graphs without theta graphs of order 7
    Bataineh, M. S.
    Al-Rhayyel, A. A.
    Mustafa, Zead
    Jaradat, M. M. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 413 - 427
  • [26] The Turan number for the edge blow-up of trees
    Wang, Anyao
    Hou, Xinmin
    Liu, Boyuan
    Ma, Yue
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [27] The Turan Number of the Graph 3P5
    Feng, Liquan
    Hu, Yumei
    FILOMAT, 2020, 34 (10) : 3395 - 3410
  • [28] Generalized Turan number for linear forests
    Zhu, Xiutao
    Chen, Yaojun
    DISCRETE MATHEMATICS, 2022, 345 (10)
  • [29] A Turan-Type Problem on Distances in Graphs
    Tyomkyn, Mykhaylo
    Uzzell, Andrew J.
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1927 - 1942
  • [30] Regular Turan numbers of complete bipartite graphs
    Tait, Michael
    Timmons, Craig
    DISCRETE MATHEMATICS, 2021, 344 (10)