Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs

被引:847
|
作者
Leong, KF [1 ]
Cheah, CM [1 ]
Chua, CK [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Prod Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
tissue engineering; solid freeform fabrication; rapid prototyping; scaffolds; biomaterials;
D O I
10.1016/S0142-9612(03)00030-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Most tissue engineering (TE) strategies for creating functional replacement tissues or organs rely on the application of temporary three-dimensional scaffolds to guide the proliferation and spread of seeded cells in vitro and in vivo. The characteristics of TE scaffolds are major concerns in the quest to fabricate ideal scaffolds. This paper identifies essential structural characteristics and the pre-requisites for fabrication techniques that can yield scaffolds that are, capable of directing healthy and homogeneous tissue development. Emphasis is given to solid freeform (SIFF), also known as rapid prototyping, technologies which are fast becoming the techniques of choice for scaffold fabrication with the potential to overcome the limitations of conventional manual-based fabrication techniques. SFF-fabricated scaffolds have been found to be, able to address most, if not all the macro- and micro-architectural requirements for TE applications. This paper reviews the application/potential application of state-of-the-art SIFF fabrication techniques in creating TE scaffolds. The advantages and limitations of the SFF techniques are compared. Related research carried out worldwide by different institutions, including the authors' research are discussed. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2363 / 2378
页数:16
相关论文
共 50 条
  • [21] Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins
    Hong, Jung Min
    Kim, Bum Jin
    Shim, Jin-Hyung
    Kang, Kyung Shin
    Kim, Ki-Joo
    Rhie, Jong Won
    Cha, Hyung Joon
    Cho, Dong-Woo
    ACTA BIOMATERIALIA, 2012, 8 (07) : 2578 - 2586
  • [22] A versatile three-dimensional foam fabrication strategy for soft and hard tissue engineering
    Xu, Changlu
    Bai, Yanjie
    Yang, Shaofeng
    Yang, Huilin
    Stout, David A.
    Tran, Phong A.
    Yang, Lei
    BIOMEDICAL MATERIALS, 2018, 13 (02)
  • [23] Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering
    Seitz, H
    Rieder, W
    Irsen, S
    Leukers, B
    Tille, C
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2005, 74B (02) : 782 - 788
  • [24] CHARACTERIZATION OF THREE-DIMENSIONAL PRINTED COMPOSITE SCAFFOLDS PREPARED WITH DIFFERENT FABRICATION METHODS
    Szlazak, K.
    Jaroszewicz, J.
    Ostrowska, B.
    Jaroszewicz, T.
    Nabialek, M.
    Szota, M.
    Swieszkowsk, W.
    ARCHIVES OF METALLURGY AND MATERIALS, 2016, 61 (02) : 645 - 649
  • [25] Fabrication of Three-Dimensional Porous keratin/PEO biological scaffolds
    Li, Jia
    Yu, Li-Hua
    Fan, Jie
    Liu, Yong
    ADVANCES IN TEXTILE ENGINEERING AND MATERIALS III, PTS 1 AND 2, 2013, 821-822 : 1035 - +
  • [26] Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds
    Chen, Yujie
    Shafiq, Muhammad
    Liu, Mingyue
    Morsi, Yosry
    Mo, Xiumei
    BIOACTIVE MATERIALS, 2020, 5 (04) : 963 - 979
  • [27] Machine Learning-Guided Three-Dimensional Printing of Tissue Engineering Scaffolds
    Conev, Anja
    Litsa, Eleni E.
    Perez, Marissa R.
    Diba, Mani
    Mikos, Antonios G.
    Kavraki, Lydia E.
    TISSUE ENGINEERING PART A, 2020, 26 (23-24) : 1359 - 1368
  • [28] Three-Dimensional Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients
    Diaz-Gomez, Luis
    Kontoyiannis, Panayiotis D.
    Melchiorri, Anthony J.
    Mikos, Antonios G.
    TISSUE ENGINEERING PART C-METHODS, 2019, 25 (07) : 411 - 420
  • [29] Scaffold fabrication by indirect three-dimensional printing
    Lee, M
    Dunn, JCY
    Wu, BM
    BIOMATERIALS, 2005, 26 (20) : 4281 - 4289
  • [30] Three-dimensional tissue fabrication
    Tsang, VL
    Bhatia, SN
    ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (11) : 1635 - 1647