Multimodal shared features learning for emotion recognition by enhanced sparse local discriminative canonical correlation analysis

被引:14
|
作者
Fu, Jiamin [1 ]
Mao, Qirong [1 ]
Tu, Juanjuan [2 ]
Zhan, Yongzhao [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Comp Sci & Engn, Zhenjiang, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Multimodal emotion recognition; Multimodal shared feature learning; Multimodal information fusion; Canonical correlation analysis;
D O I
10.1007/s00530-017-0547-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multimodal emotion recognition is a challenging research topic which has recently started to attract the attention of the research community. To better recognize the video users' emotion, the research of multimodal emotion recognition based on audio and video is essential. Multimodal emotion recognition performance heavily depends on finding good shared feature representation. The good shared representation needs to consider two aspects: (1) it has the character of each modality and (2) it can balance the effect of different modalities to make the decision optimal. In the light of these, we propose a novel Enhanced Sparse Local Discriminative Canonical Correlation Analysis approach (En-SLDCCA) to learn the multimodal shared feature representation. The shared feature representation learning involves two stages. In the first stage, we pretrain the Sparse Auto-Encoder with unimodal video (or audio), so that we can obtain the hidden feature representation of video and audio separately. In the second stage, we obtain the correlation coefficients of video and audio using our En-SLDCCA approach, then we form the shared feature representation which fuses the features from video and audio using the correlation coefficients. We evaluate the performance of our method on the challenging multimodal Enterface'05 database. Experimental results reveal that our method is superior to the unimodal video (or audio) and improves significantly the performance for multimodal emotion recognition when compared with the current state of the art.
引用
收藏
页码:451 / 461
页数:11
相关论文
共 26 条
  • [1] Multimodal shared features learning for emotion recognition by enhanced sparse local discriminative canonical correlation analysis
    Jiamin Fu
    Qirong Mao
    Juanjuan Tu
    Yongzhao Zhan
    Multimedia Systems, 2019, 25 : 451 - 461
  • [2] Sparse Representation based Discriminative Canonical Correlation Analysis for Face Recognition
    Guan, Naiyang
    Zhang, Xiang
    Luo, Zhigang
    Lan, Long
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 51 - 56
  • [3] Canonical correlation analysis based on local sparse representation and linear discriminative analysis
    Xia, J.-M. (jianmingeei@163.com), 1600, Northeast University (29): : 1279 - 1284
  • [4] Feature Fusion for Multimodal Emotion Recognition Based on Deep Canonical Correlation Analysis
    Zhang, Ke
    Li, Yuanqing
    Wang, Jingyu
    Wang, Zhen
    Li, Xuelong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1898 - 1902
  • [5] Multimodal Emotion Recognition Using Deep Generalized Canonical Correlation Analysis with an Attention Mechanism
    Lan, Yu-Ting
    Liu, Wei
    Lu, Bao-Liang
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [6] An Adaptive Framework of Multimodal Emotion Recognition Based on Collaborative Discriminative Learning
    Wang, Yadi
    Guo, Xiaoding
    Zhang, Yibo
    Ren, Yiyuan
    Huang, Wendi
    Liu, Zunyan
    Feng, Yuming
    Dai, Xiangguang
    Zhang, Wei
    Che, Hangjun
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [7] Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion
    Lei, Baiying
    Chen, Siping
    Ni, Dong
    Wang, Tianfu
    FRONTIERS IN AGING NEUROSCIENCE, 2016, 8
  • [8] Multiview Gait Recognition Based on Patch Distribution Features and Uncorrelated Multilinear Sparse Local Discriminant Canonical Correlation Analysis
    Hu, Haifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (04) : 617 - 630
  • [9] Sparse regularized discriminative canonical correlation analysis for multi-view semi-supervised learning
    Shudong Hou
    Heng Liu
    Quansen Sun
    Neural Computing and Applications, 2019, 31 : 7351 - 7359
  • [10] Sparse regularized discriminative canonical correlation analysis for multi-view semi-supervised learning
    Hou, Shudong
    Liu, Heng
    Sun, Quansen
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11) : 7351 - 7359