Spatially resolving density-dependent screening around a single charged atom in graphene

被引:20
作者
Wong, Dillon [1 ,2 ]
Corsetti, Fabiano [3 ,4 ]
Wang, Yang [1 ,2 ]
Brar, Victor W. [1 ,2 ]
Tsai, Hsin-Zon [1 ,2 ]
Wu, Qiong [1 ,2 ]
Kawakami, Roland K. [5 ,6 ]
Zettl, Alex [1 ,2 ,7 ,8 ]
Mostofi, Arash A. [3 ,4 ]
Lischner, Johannes [3 ,4 ]
Crommie, Michael F. [1 ,2 ,7 ,8 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Imperial Coll London, Dept Mat & Phys, London SW7 2AZ, England
[4] Imperial Coll London, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
[5] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[6] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[7] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[8] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
DIRAC FERMIONS; HIGH-QUALITY; IMPURITY;
D O I
10.1103/PhysRevB.95.205419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrons in two-dimensional graphene sheets behave as interacting chiral Dirac fermions and have unique screening properties due to their symmetry and reduced dimensionality. By using a combination of scanning tunneling spectroscopy measurements and theoretical modeling we have characterized how graphene's massless charge carriers screen individual charged calcium atoms. A backgated graphene device configuration has allowed us to directly visualize how the screening length for this system can be tuned with carrier density. Our results provide insight into electron-impurity and electron-electron interactions in a relativistic setting with important consequences for other graphene-based electronic devices.
引用
收藏
页数:7
相关论文
共 58 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Boltzmann transport and residual conductivity in bilayer graphene [J].
Adam, Shaffique ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2008, 77 (11)
[3]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[4]   Gate-controlled ionization and screening of cobalt adatoms on a graphene surface [J].
Brar, Victor W. ;
Decker, Regis ;
Solowan, Hans-Michael ;
Wang, Yang ;
Maserati, Lorenzo ;
Chan, Kevin T. ;
Lee, Hoonkyung ;
Girit, Caglar O. ;
Zettl, Alex ;
Louie, Steven G. ;
Cohen, Marvin L. ;
Crommie, Michael F. .
NATURE PHYSICS, 2011, 7 (01) :43-47
[5]   Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy [J].
Brar, Victor W. ;
Wickenburg, Sebastian ;
Panlasigui, Melissa ;
Park, Cheol-Hwan ;
Wehling, Tim O. ;
Zhang, Yuanbo ;
Decker, Regis ;
Girit, Caglar ;
Balatsky, Alexander V. ;
Louie, Steven G. ;
Zettl, Alex ;
Crommie, Michael F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   First-principles study of metal adatom adsorption on graphene [J].
Chan, Kevin T. ;
Neaton, J. B. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2008, 77 (23)
[8]   Superconductivity in Ca-doped graphene laminates [J].
Chapman, J. ;
Su, Y. ;
Howard, C. A. ;
Kundys, D. ;
Grigorenko, A. N. ;
Guinea, F. ;
Geim, A. K. ;
Grigorieva, I. V. ;
Nair, R. R. .
SCIENTIFIC REPORTS, 2016, 6
[9]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[10]   First-principles multiscale modelling of charged adsorbates on doped graphene [J].
Corsetti, Fabiano ;
Mostofi, Arash A. ;
Lischner, Johannes .
2D MATERIALS, 2017, 4 (02)