Objectives. To evaluate the oxidative status of the bladder 8 weeks after diabetes induction. Oxidative stress has recently been implicated in the pathogenesis of diabetes complications, but its role in diabetic cystopathy has not been studied. Methods. Sprague-Dawley rats were divided into three groups: control (n = 1 1), diuretic control (5% sucrose drink; n = 6), and streptozotocin-induced diabetic group (n = 14). Eight weeks later, the bladders were dissected. We measured the antioxidant scavenging enzymes (catalase and superoxide dismutase)-like activity and the levels of the thiobarbituric acid reactive substances, as a marker of lipid peroxidation. We also examined the levels of inducible nitric oxide synthase and apoptosis in the bladders. Results. We found a statistically significant reduction in the catalase-like activity in the bladders from the diabetic group compared with the other groups (P = 0.017, diabetic versus control); the difference in the superoxide dismutase-like activity was not statistically significant among the groups. The thiobarbituric acid reactive substances levels were significantly greater in the diabetic compared with other groups (131.9 +/- 47.5, 46.7 +/- 17.9, and 60.9 +/- 25.4 nmol/mg protein in the diabetic, control, and diuretic group, respectively, P = 0.006, diabetic versus control). Immunohistochemical and apoptosis studies showed a statistically significant increased number of inducible nitric oxide synthase-positive cells and apoptotic cells in the diabetic bladder smooth muscle cells (P <0.001). Conclusions. Our findings showed that oxidative stress occurred in the bladders of the STZ-diabetic rats and was not mediated by diuresis. The oxidative damage of the smooth muscle cells may be a contributory factor in diabetic cystopathy. (C) 2004 Elsevier Inc.