A narrative review of biparametric MRI (bpMRI) implementation on screening, detection, and the overall accuracy for prostate cancer

被引:13
|
作者
Greenberg, Jacob W. [2 ]
Koller, Christopher R. [2 ]
Casado, Crystal [2 ]
Triche, Benjamin L. [3 ]
Krane, L. Spencer [1 ,2 ]
机构
[1] Southeastern Louisiana Vet Hlth Care Syst, 2400 Canal St, New Orleans, LA 70119 USA
[2] Tulane Univ, Sch Med, Dept Urol, New Orleans, LA 70112 USA
[3] Tulane Univ, Sch Med, Dept Radiol, 1430 Tulane Ave, New Orleans, LA 70112 USA
关键词
bpMRI; biparametric; prostate cancer; diagnostic imaging; specificity and sensitivity; MULTIPARAMETRIC MRI; TARGETED BIOPSY; DATA SYSTEM; VERSION; ZONE; DIAGNOSIS; STAGE; MEN;
D O I
10.1177/17562872221096377
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Prostate cancer is the most common malignancy in American men following skin cancer, with approximately one in eight men being diagnosed during their lifetime. Over the past several decades, the treatment of prostate cancer has evolved rapidly, so too has screening. Since the mid-2010s, magnetic resonance imaging (MRI)-guided biopsies or 'targeted biopsies' has been a rapidly growing topic of clinical research within the field of urologic oncology. The aim of this publication is to provide a review of biparametric MRI (bpMRI) utilization for the diagnosis of prostate cancer and a comparison to multiparametric MRI (mpMRI). Through single-centered studies and meta-analysis across all identified pertinent published literature, bpMRI is an effective tool for the screening and diagnosis of prostate cancer. When compared with the diagnostic accuracy of mpMRI, bpMRI identifies prostate cancer at comparable rates. In addition, when omitting dynamic contrast-enhanced (DCE) protocol to the MRI, patients incur reduced costs and shorter imaging time while providers can offer more tests to their patient population.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Detection of Prostate Cancer Using Biparametric Prostate MRI, Radiomics, and Kallikreins: A Retrospective Multicenter Study of Men With a Clinical Suspicion of Prostate Cancer
    Montoya Perez, Ileana
    Merisaari, Harri
    Jambor, Ivan
    Ettala, Otto
    Taimen, Pekka
    Knaapila, Juha
    Kekki, Henna
    Khan, Ferdhos L.
    Syrjala, Elise
    Steiner, Aida
    Syvanen, Kari T.
    Verho, Janne
    Seppanen, Marjo
    Rannikko, Antti
    Riikonen, Jarno
    Mirtti, Tuomas
    Lamminen, Tarja
    Saunavaara, Jani
    Falagario, Ugo
    Martini, Alberto
    Pahikkala, Tapio
    Pettersson, Kim
    Bostrom, Peter J.
    Aronen, Hannu J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (02) : 465 - 477
  • [22] Multiparametric MRI Versus Multiparametric US in the Detection of Prostate Cancer
    Drudi, Francesco M.
    Cantisani, Vito
    Angelini, Flavia
    Ciccariello, Mauro
    Messineo, Daniela
    Ettorre, Evaristo
    Liberatore, Mauro
    Scialpi, Michele
    ANTICANCER RESEARCH, 2019, 39 (06) : 3101 - 3110
  • [23] Prediction of Clinically Significant Prostate Cancer Using Multiparametric MRI, Biparametric MRI, and Clinical Parameters
    Oberneder, Maximilian
    Henzler, Thomas
    Kriegmair, Martin
    Vag, Tibor
    Roethke, Matthias
    Siegert, Sabine
    Lang, Roland
    Lenk, Julia
    Gawlitza, Joshua
    UROLOGIA INTERNATIONALIS, 2024,
  • [24] Interobserver agreement in prostate cancer detection using multiparametric MRI
    Popita, Cristian
    Popita, Anca-Raluca
    Andrei, Adina
    Rusu, Adriana
    Fetica, Bogdan
    Petrut, Bogdan
    Ciuleanu, Tudor Eliade
    Coman, Ioan
    JOURNAL OF BUON, 2018, 23 (04): : 1061 - 1069
  • [25] Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the Detection, Grading, and Characterization of Prostate Cancer: A Systematic Review
    Michaely, Henrik J.
    Aringhieri, Giacomo
    Cioni, Dania
    Neri, Emanuele
    DIAGNOSTICS, 2022, 12 (04)
  • [26] Cascaded Architecture for Segmenting Prostate Cancer Lesions in Biparametric MRI
    Thipkasorn, Chaloemphon
    Chaichulee, Sitthichok
    Bejrananda, Tanan
    Tubtawee, Teeravut
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 167 - 173
  • [27] Biparametric versus Multiparametric MRI with Non-endorectal Coil at 3T in the Detection and Localization of Prostate Cancer
    Scialpi, Michele
    Prosperi, Enrico
    D'Andrea, Alfredo
    Martorana, Eugenio
    Malaspina, Corrado
    Palumbo, Barbara
    Orlandi, Agostino
    Falcone, Giuseppe
    Milizia, Michele
    Mearini, Luigi
    Aisa, Maria Cristina
    Scialpi, Pietro
    De Domincis, Carlo
    Bianchi, Giampaolo
    Sidoni, Angelo
    ANTICANCER RESEARCH, 2017, 37 (03) : 1263 - 1271
  • [28] Biparametric (bp) and multiparametric (mp) magnetic resonance imaging (MRI) approach to prostate cancer disease: a narrative review of current debate on dynamic contrast enhancement
    Palumbo, Pierpaolo
    Manetta, Rosa
    Izzo, Antonio
    Bruno, Federico
    Arrigoni, Francesco
    De Filippo, Massimo
    Splendiani, Alessandra
    Di Cesare, Ernesto
    Masciocchi, Carlo
    Barile, Antonio
    GLAND SURGERY, 2020, 9 (06) : 2235 - 2247
  • [29] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Kesani, Deepak
    Lay, Nathan
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1425 - 1434
  • [30] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Sherif Mehralivand
    Dong Yang
    Stephanie A. Harmon
    Daguang Xu
    Ziyue Xu
    Holger Roth
    Samira Masoudi
    Deepak Kesani
    Nathan Lay
    Maria J. Merino
    Bradford J. Wood
    Peter A. Pinto
    Peter L. Choyke
    Baris Turkbey
    Abdominal Radiology, 2022, 47 : 1425 - 1434