Spectroscopic Gas Sensing Based on a MEMS-SOA Swept Fiber Laser Source

被引:17
作者
Gerguis, John O. [1 ]
Sabry, Yasser M. [1 ,2 ]
Omran, Haitham [3 ]
Khalil, Diaa [1 ,2 ]
机构
[1] Ain Shams Univ, Fac Engn, Elect Engn Dept, Cairo 11566, Egypt
[2] Si Ware Syst, Heliopolis 11361, Egypt
[3] German Univ Cairo, Lab Micro Opt, Fac Informat Engn & Technol, New Cairo 11511, Egypt
关键词
Gas lasers; Cavity resonators; Micromechanical devices; Fiber lasers; Optical fiber amplifiers; Measurement by laser beam; Optical fiber sensors; Environmental monitoring; gas analyzer; laser spectroscopy; photonic MEMS; tunable filter; TUNABLE FILTER;
D O I
10.1109/JLT.2019.2932688
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we report on real-time gas sensing using a swept fiber laser source (SFLS) based on a micro-electro-mechanical-system (MEMS) tunable filter, a semiconductor optical amplifier (SOA) gain medium and a fiber ring. The MEMS filter is implemented using deeply-etched silicon-on-insulator (SOI) silicon/air Bragg mirrors attached to a micro-actuator enabling a relatively high-speed tunability and compatibility with single-mode fibers. Atheoretical analysis is presented relating the required laser output power and spectral linewidth to the gas detection limits taking into account the signal-to-noise ratio (SNR). The minimum detectable concentrations of nitrous oxide, carbon dioxide, carbon monoxide and acetylene gases were determined. The dependence of the gas spectrum in terms of its absorption line strength, spectral width and spacing on the laser source was emphasized in the analysis, revealing the limits of distinguishing between different gases. The fiber-laser source is then characterized under static and dynamic conditions. An experimental parametric study was carried out varying the fiber cavity length from 20 m to 2 km, the sweep rate up to 2 kHz and the pumping current up to 6 times the threshold current. Finally, the SFLS is exploited to measure the transmission spectrum of carbon dioxide gas - as an example - at various pressures. The effects of the pumping current, the sweeping speed, and the sweeping direction on the measured spectrum were studied in order to determine the optimal conditions. The measured spectrum is compared with the theoretical one taking into consideration the FWHM of the laser source. The comparison shows a good match.
引用
收藏
页码:5354 / 5360
页数:7
相关论文
共 24 条
[1]   Resonant MEMS Tunable VCSEL [J].
Ansbaek, Thor ;
Chung, Il-Sug ;
Semenova, Elizaveta S. ;
Hansen, Ole ;
Yvind, Kresten .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
[2]  
Brumfield B. E., 2015, PROC CONF LASERS ELE, P1
[3]   High-performance thermo-optic tunable grating filters based on laterally supported suspended silicon ridge waveguide [J].
Chen, Kai ;
Duan, Fei ;
Yu, Yonglin .
OPTICS EXPRESS, 2018, 26 (15) :19479-19488
[4]   Optical coherence tomography using a frequency-tunable optical source [J].
Chinn, SR ;
Swanson, EA ;
Fujimoto, JG .
OPTICS LETTERS, 1997, 22 (05) :340-342
[5]   On-Chip Micro-Electro-Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing [J].
Erfan, Mazen ;
Sabry, Yasser M. ;
Sakr, Mohammad ;
Mortada, Bassem ;
Medhat, Mostafa ;
Khalil, Diaa .
APPLIED SPECTROSCOPY, 2016, 70 (05) :897-904
[6]   Capturing the Instantaneous Spectral Response of a MEMS Swept Laser Source Using a Quasi-Static Tunable Filter [J].
Gerguis, John Onsy ;
Sabry, Yasser M. ;
Khalil, Diaa .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2019, 25 (06)
[7]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69
[8]  
Griffiths P. R., 2007, FOURIER TRANSFORM IN, P177
[9]   Optical gas sensing: a review [J].
Hodgkinson, Jane ;
Tatam, Ralph P. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (01)
[10]   Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles [J].
Huber, R ;
Wojtkowski, M ;
Taira, K ;
Fujimoto, JG ;
Hsu, K .
OPTICS EXPRESS, 2005, 13 (09) :3513-3528