Temperature increase reduces global yields of major crops in four independent estimates

被引:1926
作者
Zhao, Chuang [1 ]
Liu, Bing [2 ,3 ,4 ,5 ,6 ]
Piao, Shilong [1 ,7 ,8 ]
Wang, Xuhui [1 ]
Lobell, David B. [9 ]
Huang, Yao [10 ]
Huang, Mengtian [1 ]
Yao, Yitong [1 ]
Bassu, Simona [11 ]
Ciais, Philippe [12 ]
Durand, Jean-Louis [13 ]
Elliott, Joshua [14 ,15 ]
Ewert, Frank [16 ,17 ]
Janssens, Ivan A. [18 ]
Li, Tao [19 ]
Lin, Erda [20 ]
Liu, Qiang [1 ]
Martre, Pierre [21 ]
Mueller, Christoph [22 ]
Peng, Shushi [1 ]
Penuelas, Josep [23 ,24 ]
Ruane, Alex C. [15 ,25 ]
Wallach, Daniel [26 ]
Wang, Tao [7 ,8 ]
Wu, Donghai [1 ]
Liu, Zhuo [1 ]
Zhu, Yan [2 ,3 ,4 ,5 ]
Zhu, Zaichun [1 ]
Asseng, Senthold [6 ]
机构
[1] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[2] Nanjing Agr Univ, Natl Engn & Technol Ctr Informat Agr, Nanjing 210095, Jiangsu, Peoples R China
[3] Nanjing Agr Univ, Key Lab Crop Syst Anal & Decis Making, Minist Agr, Nanjing 210095, Jiangsu, Peoples R China
[4] Nanjing Agr Univ, Jiangsu Key Lab Informat Agr, Nanjing 210095, Jiangsu, Peoples R China
[5] Nanjing Agr Univ, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Nanjing 210095, Jiangsu, Peoples R China
[6] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA
[7] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China
[8] Chinese Acad Sci, Ctr Excellence Tibetan Earth Sci, Beijing 100085, Peoples R China
[9] Stanford Univ, Dept Earth Syst Sci, Ctr Food Secur & Environm, Stanford, CA 94305 USA
[10] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[11] Univ Sassari, Desertificat Res Ctr, I-07100 Sassari, Italy
[12] Univ Versailles St Quentin, Lab Sci Climat & Environm, Commissariat Energie Atom & Energies Alternat, CNRS, F-91191 Gif Sur Yvette, France
[13] INRA, Unite Rech Pluridisciplinaire Prairies & Plantes, CS 80006, F-86600 Lusignan, France
[14] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[15] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA
[16] Univ Bonn, Inst Crop Sci & Resource Conservat, D-53115 Bonn, Germany
[17] Leibniz Ctr Agr Landscape Res, D-15374 Muncheberg, Germany
[18] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[19] Int Rice Res Inst, Los Banos 4031, Laguna, Philippines
[20] Chinese Acad Agr Sci, Agroenvironm & Sustainable Dev Inst, Beijing 100081, Peoples R China
[21] Montpellier SupAgro, UMR Lab Ecophysiol Plantes Stress Environm, INRA, Montpellier, France
[22] Potsdam Inst Climate Impact Res, Climate Impacts & Vulnerabil, D-14473 Potsdam, Germany
[23] Ctr Recerca Ecol & Aplicac Forestals, Barcelona 08193, Spain
[24] UAB, CSIC, Global Ecol Unit, CREAF, Barcelona 08193, Catalonia, Spain
[25] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[26] INRA, UMR Agrosyst & Dev Terr 1248, F-31326 Castanet Tolosan, France
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
climate change impact; global food security; major food crops; temperature increase; yield; CLIMATE-CHANGE; WHEAT YIELD; IMPACTS; GROWTH; RANGE; FOOD;
D O I
10.1073/pnas.1701762114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop-and region-specific adaptation strategies to ensure food security for an increasing world population.
引用
收藏
页码:9326 / 9331
页数:6
相关论文
共 33 条
[1]  
[Anonymous], 2014, FAOSTAT
[2]  
Asseng S, 2015, NAT CLIM CHANGE, V5, P143, DOI [10.1038/nclimate2470, 10.1038/NCLIMATE2470]
[3]   The impact of temperature variability on wheat yields [J].
Asseng, Senthold ;
Foster, Ian ;
Turner, Neil C. .
GLOBAL CHANGE BIOLOGY, 2011, 17 (02) :997-1012
[4]   How do various maize crop models vary in their responses to climate change factors? [J].
Bassu, Simona ;
Brisson, Nadine ;
Durand, Jean-Louis ;
Boote, Kenneth ;
Lizaso, Jon ;
Jones, James W. ;
Rosenzweig, Cynthia ;
Ruane, Alex C. ;
Adam, Myriam ;
Baron, Christian ;
Basso, Bruno ;
Biernath, Christian ;
Boogaard, Hendrik ;
Conijn, Sjaak ;
Corbeels, Marc ;
Deryng, Delphine ;
De Sanctis, Giacomo ;
Gayler, Sebastian ;
Grassini, Patricio ;
Hatfield, Jerry ;
Hoek, Steven ;
Izaurralde, Cesar ;
Jongschaap, Raymond ;
Kemanian, Armen R. ;
Kersebaum, K. Christian ;
Kim, Soo-Hyung ;
Kumar, Naresh S. ;
Makowski, David ;
Mueller, Christoph ;
Nendel, Claas ;
Priesack, Eckart ;
Pravia, Maria Virginia ;
Sau, Federico ;
Shcherbak, Iurii ;
Tao, Fulu ;
Teixeira, Edmar ;
Timlin, Dennis ;
Waha, Katharina .
GLOBAL CHANGE BIOLOGY, 2014, 20 (07) :2301-2320
[5]   Why are wheat yields stagnating in Europe? A comprehensive data analysis for France [J].
Brisson, Nadine ;
Gate, Philippe ;
Gouache, David ;
Charmet, Gilles ;
Oury, Francois-Xavier ;
Huard, Frederic .
FIELD CROPS RESEARCH, 2010, 119 (01) :201-212
[6]  
Chad M, 2008, GLOBAL BIOGEOCHEM CY, V22, P89
[7]   The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) [J].
Elliott, J. ;
Mueller, C. ;
Deryng, D. ;
Chryssanthacopoulos, J. ;
Boote, K. J. ;
Buechner, M. ;
Foster, I. ;
Glotter, M. ;
Heinke, J. ;
Iizumi, T. ;
Izaurralde, R. C. ;
Mueller, N. D. ;
Ray, D. K. ;
Rosenzweig, C. ;
Ruane, A. C. ;
Sheffield, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (02) :261-277
[8]   Crop modelling for integrated assessment of risk to food production from climate change [J].
Ewert, F. ;
Rotter, R. P. ;
Bindi, M. ;
Webber, H. ;
Trnka, M. ;
Kersebaum, K. C. ;
Olesen, J. E. ;
van Ittersum, M. K. ;
Janssen, S. ;
Rivington, M. ;
Semenov, M. A. ;
Wallach, D. ;
Porter, J. R. ;
Stewart, D. ;
Verhagen, J. ;
Gaiser, T. ;
Palosuo, T. ;
Tao, F. ;
Nendel, C. ;
Roggero, P. P. ;
Bartosova, L. ;
Asseng, S. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 72 :287-303
[9]  
Flato G, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P741
[10]   A trend-preserving bias correction - the ISI-MIP approach [J].
Hempel, S. ;
Frieler, K. ;
Warszawski, L. ;
Schewe, J. ;
Piontek, F. .
EARTH SYSTEM DYNAMICS, 2013, 4 (02) :219-236