ALL REAL EIGENVALUES OF SYMMETRIC TENSORS

被引:123
作者
Cui, Chun-Feng [1 ]
Dai, Yu-Hong [1 ]
Nie, Jiawang [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
symmetric tensors; eigenvalues of tensors; polynomial optimization; Lasserre's hierarchy; semidefinite relaxation; OPTIMIZATION;
D O I
10.1137/140962292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies how to compute all real eigenvalues, associated to real eigenvectors, of a symmetric tensor. As is well known, the largest or smallest eigenvalue can be found by solving a polynomial optimization problem, while the other middle ones cannot. We propose a new approach for computing all real eigenvalues sequentially, from the largest to the smallest. It uses Jacobian semidefinite relaxations in polynomial optimization. We show that each eigenvalue can be computed by solving a finite hierarchy of semidefinite relaxations. Numerical experiments are presented to show how to do this.
引用
收藏
页码:1582 / 1601
页数:20
相关论文
共 38 条
[1]  
[Anonymous], 2013, HDB LINEAR ALGEBRA
[2]  
[Anonymous], 1997, Applied numerical linear algebra
[3]  
BRUNS W, 1988, LECT NOTES MATH, V1327, P1
[4]   The number of eigenvalues of a tensor [J].
Cartwright, Dustin ;
Sturmfels, Bernd .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) :942-952
[5]  
Chang KC, 2008, COMMUN MATH SCI, V6, P507
[6]   Positive Semidefinite Generalized Diffusion Tensor Imaging via Quadratic Semidefinite Programming [J].
Chen, Yannan ;
Dai, Yuhong ;
Han, Deren ;
Sun, Wenyu .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (03) :1531-1552
[7]  
Cox D. A., 2007, IDEALS VARIETIES ALG, V3/e
[8]  
Curto RE, 2005, J OPERAT THEOR, V54, P189
[9]   AN UNCONSTRAINED OPTIMIZATION APPROACH FOR FINDING REAL EIGENVALUES OF EVEN ORDER SYMMETRIC TENSORS [J].
Han, Lixing .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2013, 3 (03) :583-599
[10]  
Hao C., NUMER LINEA IN PRESS