Thermodynamics and kinetics analysis from liquid chemical looping gasification of lignin with bismuth-based oxygen carrier

被引:14
|
作者
Guo, Wei [1 ]
Zhang, Bo [1 ]
Zhang, Rongjiang [1 ]
Zhang, Jie [1 ]
Li, Yaowu [2 ]
Wu, Zhiqiang [1 ,3 ]
Ma, Jingjing [3 ]
Yang, Bolun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Shaanxi Key Lab Energy Chem Proc Intensificat, Xian 710049, Shaanxi, Peoples R China
[2] Nucl Power Inst China, Chengdu 610213, Sichuan, Peoples R China
[3] State Key Lab High Efficiency Utilizat Coal & Gre, Yinchuan 750021, Ningxia, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Liquid chemical looping gasification; Kinetic analysis; Biomass; Thermodynamics; Simulation; LOW-RANK COAL; LIGNOCELLULOSIC BIOMASS; MICROALGAE BIOMASS; PYROLYSIS BEHAVIOR; THERMAL-BEHAVIOR; METAL-OXIDES; IRON-OXIDE; COMBUSTION; REACTOR; TEMPERATURE;
D O I
10.1016/j.fuproc.2021.106888
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Liquid chemical looping gasification (LCLG) provides a new direction for fuel gasification, which can avoid the technical challenges brought by using solid OCs, such as acting and coking. But the related research ideas and data are few. Here, we have conducted relevant research. Thermodynamics and kinetics analysis of lignin (LG) with bismuth oxide (Bi2O3) during LCLG were investigated. Through thermodynamic analysis, the optimal temperature for LCLG was 800-850 degrees C, and the optimal mixing mass ratio of Bi2O3/LG was about 5.00-6.00. The effects of heating rate and oxygen carrier mass ratio on apparent activation energies were carried out by thermogravimetric analyzer combined with on-line mass spectrometry. The apparent activation energies of lignin samples were 151.333,171.572,199.826, and 127.012 kJ.mol(-1). The activation energy of the main gas products was obtained by the isoconversion method. In the LCLG process, with the increase of Bi2O3 mixing ratio, the activation energy of CO, CO2, and H-2 formation first increased and then decreased, wherein that of H-2 (59.89 kJ.mol(-1)) was on the peak. The results are conducive to the development of new liquid oxygen carriers and also provide data basis for the multi-way utilization of carbon-based fuels.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Chemical looping combustion and gasification of swine manure with a Cu-Based oxygen carrier
    Domingos, Yldeney
    Abad, Alberto
    Loscertales, Margarita De Las Obras
    Izquierdo, Maria Teresa
    Cabello, Arturo
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [22] Syngas production by chemical looping gasification of rice husk using Fe-based oxygen carrier
    Huang, Xiangneng
    Wu, Jiawei
    Wang, Mingfeng
    Ma, Xiaoqian
    Jiang, Enchen
    Hu, Zhifeng
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (04) : 1261 - 1270
  • [23] Kinetics Analysis of Cu-Zr Oxygen Carrier for Chemical Looping Oxygen Production
    Wang Kun
    Yu Qing-Bo
    Qin Qin
    Li Jiu-Chong
    Wang Zhi-Mei
    JOURNAL OF INORGANIC MATERIALS, 2014, 29 (03) : 301 - 308
  • [24] Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier
    Hu, Jianjun
    Li, Chong
    Guo, Qianhui
    Dang, Jiatao
    Zhang, Quanguo
    Lee, Duu-Jong
    Yang, Yunlong
    BIORESOURCE TECHNOLOGY, 2018, 263 : 273 - 279
  • [25] Application of Mn-Fe Composite Oxides Loaded on Alumina as Oxygen Carrier for Chemical Looping Gasification
    Chen, Zhihao
    Liao, Yanfen
    Liu, Guicai
    Mo, Fei
    Ma, Xiaoqian
    WASTE AND BIOMASS VALORIZATION, 2020, 11 (11) : 6395 - 6409
  • [26] Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier
    Huang, Zhen
    Deng, Zhengbing
    Chen, Dezhen
    He, Fang
    Liu, Shuai
    Zhao, Kun
    Wei, Guoqiang
    Zheng, Anqing
    Zhao, Zengli
    Li, Haibin
    ENERGY, 2017, 141 : 1836 - 1844
  • [27] In situ gasification of a lignite coal and CO2 separation using chemical looping with a Cu-based oxygen carrier
    Dennis, John S.
    Scott, Stuart A.
    FUEL, 2010, 89 (07) : 1623 - 1640
  • [28] Steel converter slag as an oxygen carrier for chemical-looping gasification
    Hildor, Fredrik
    Leion, Henrik
    Linderholm, Carl Johan
    Mattisson, Tobias
    FUEL PROCESSING TECHNOLOGY, 2020, 210
  • [29] Chemical Looping Gasification of a Biomass Pellet with a Manganese Ore as an Oxygen Carrier in the Fluidized Bed
    Yin, Shangyi
    Shen, Laihong
    Dosta, Maksym
    Hartge, Ernst-Ulrich
    Heinrich, Stefan
    Lu, Ping
    Werther, Joachim
    Song, Tao
    ENERGY & FUELS, 2018, 32 (11) : 11674 - 11682
  • [30] Evaluation of calcined copper slag as an oxygen carrier for chemical looping gasification of sewage sludge
    Deng, Zhengbing
    Huang, Zhen
    He, Fang
    Zheng, Anqing
    Wei, Guogiang
    Meng, Junguang
    Zhao, Zengli
    Li, Haibin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (33) : 17823 - 17834