The combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials of lower intervals

被引:7
作者
Marietti, Mario [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
关键词
Kazhdan-Lusztig polynomials; Coxeter groups; Special matchings; SPECIAL MATCHINGS;
D O I
10.1016/j.aim.2018.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to prove a conjecture related to the Combinatorial Invariance Conjecture of Kazhdan-Lusztig polynomials, in the parabolic setting, for lower intervals in every arbitrary Coxeter group. This result improves and generalizes, among other results, the main results of Brenti et al. (2006) [6], Marietti (2016) [21]. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 210
页数:31
相关论文
共 24 条
[1]  
[Anonymous], 1986, ENUMERATIVE COMBINAT
[2]  
[Anonymous], P S PURE MATH
[3]  
[Anonymous], 1980, Geometry of the Laplace Operator. Proc. Symp. Pure Math 36 Amer. Math. Soc
[4]  
Bjorner A., 2005, Graduate Texts in Mathematics, V231, pxiv+363
[5]   Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions [J].
Brenti, F .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (02) :257-286
[6]  
Brenti F., 2003, SEM LOTHAR COMBIN, V49, pB49b
[7]   Special matchings and Kazhdan-Lusztig polynomials [J].
Brenti, Francesco ;
Caselli, Fabrizio ;
Marietti, Mario .
ADVANCES IN MATHEMATICS, 2006, 202 (02) :555-601
[8]   A twisted duality for parabolic Kazhdan Lusztig R-polynomials [J].
Brenti, Francesco .
JOURNAL OF ALGEBRA, 2017, 477 :472-482
[9]   Parabolic Kazhdan-Lusztig polynomials for quasi-minuscule quotients [J].
Brenti, Francesco ;
Mongelli, Pietro ;
Sentinelli, Paolo .
ADVANCES IN APPLIED MATHEMATICS, 2016, 78 :27-55
[10]  
Brenti F, 2009, T AM MATH SOC, V361, P1703