Convergence of Ant Colony Multi-Agent Swarms

被引:2
作者
Ornia, Daniel Jarne [1 ]
Mazo, Manuel, Jr. [1 ]
机构
[1] Delft Univ Technol, DCSC, Delft, Netherlands
来源
PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC2020) (PART OF CPS-IOT WEEK) | 2020年
关键词
swarm robotics; ant colony; random walk; convergence; OPTIMIZATION; SYSTEM;
D O I
10.1145/3365365.3382199
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ant Colony algorithms are a set of biologically inspired algorithms used commonly to solve distributed optimization problems. Convergence has been proven in the context of optimization processes, but these proofs are not applicable in the framework of robotic control. In order to use Ant Colony algorithms to control robotic swarms, we present in this work more general results that prove asymptotic convergence of a multi-agent Ant Colony swarm moving in a weighted graph.
引用
收藏
页数:11
相关论文
共 31 条
[11]   Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation [J].
Garcia, M. A. Porta ;
Montiel, Oscar ;
Castillo, Oscar ;
Sepulveda, Roberto ;
Melin, Patricia .
APPLIED SOFT COMPUTING, 2009, 9 (03) :1102-1110
[12]  
Grasse P. P., 1959, Insectes Sociaux Paris, V6, P41, DOI 10.1007/BF02223791
[13]  
Gut A, 2013, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-1-4614-4708-5
[14]   Graph-based Ant System and its convergence [J].
Gutjahr, WJ .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2000, 16 (08) :873-888
[15]   ACO algorithms with guaranteed convergence to the optimal solution [J].
Gutjahr, WJ .
INFORMATION PROCESSING LETTERS, 2002, 82 (03) :145-153
[16]  
Johansson Robert, 2009, 2009 IEEE International Conference on Robotics and Automation (ICRA), P245, DOI 10.1109/ROBOT.2009.5152737
[18]  
Kushner HJ, 1967, Stochastic stability and control
[19]  
Lovasz L, 1993, Combinatorics, Paul Erdos Is Eighty, V2, P1
[20]   Edge-reinforced random walk on a ladder [J].
Merkl, F ;
Rolles, SWW .
ANNALS OF PROBABILITY, 2005, 33 (06) :2051-2093