The Cohen-Macaulay representation type of projective arithmetically Cohen-Macaulay varieties

被引:0
作者
Faenzi, Daniele [1 ]
Pons-Llopis, Joan [2 ]
机构
[1] Univ Bourgogne & Franche Comte, Inst Math Bourgogne, UMR CNRS 5584, 9 Ave Alain Savary,BP 47870, F-21078 Dijon, France
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
来源
EPIJOURNAL DE GEOMETRIE ALGEBRIQUE | 2021年 / 5卷
关键词
ACM vector sheaves and bundles; Ulrich sheaves; MCM modules; Graded Cohen-Macaulay rings; Representation type; COMPLETE-INTERSECTIONS; ULRICH BUNDLES; MINIMAL DEGREE; CLASSIFICATION; MODULES; CURVES; RINGS; GEOMETRY; POINTS; TAME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any reduced non-degenerate closed subscheme X subset of P-n of dimension m >= 1 whose graded coordinate ring is Cohen-Macaulay is of wild Cohen-Macaulay type, except for a few cases which we completely classify.
引用
收藏
页数:37
相关论文
共 63 条
[1]  
Abhyankar S., 1960, MEM COLL SCI U KYO A, V32, P455
[2]   COMPACTIFYING THE PICARD SCHEME [J].
ALTMAN, AB ;
KLEIMAN, SL .
ADVANCES IN MATHEMATICS, 1980, 35 (01) :50-112
[3]  
[Anonymous], 2006, Global aspects of complex geometry
[4]  
[Anonymous], 1990, London Math. Soc. Lecture Notes Series
[5]  
[Anonymous], 1976, Grundlehren der Mathematischen Wissenschaften
[6]  
Atiyah M., 1957, P LOND MATH SOC, V7, P414, DOI DOI 10.1112/PLMS/S3-7.1.414
[7]   THE COHEN-MACAULAY TYPE OF COHEN-MACAULAY RINGS [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1989, 73 (01) :1-23
[8]  
AUSLANDER M, 1987, LECT NOTES MATH, V1273, P232
[9]   ULRICH BUNDLES ON ABELIAN SURFACES [J].
Beauville, Arnaud .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) :4609-4611
[10]   Arithmetic properties of projective varieties of almost minimal degree [J].
Brodmann, Markus ;
Schenzel, Peter .
JOURNAL OF ALGEBRAIC GEOMETRY, 2007, 16 (02) :347-400