Internal efficiency analysis of 280 nm light emitting diodes

被引:21
作者
Piprek, J [1 ]
Moe, C [1 ]
Keller, S [1 ]
Nakamura, S [1 ]
DenBaars, SP [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Solid State Lighting & Display Ctr, Santa Barbara, CA 93106 USA
来源
PHYSICS AND APPLICATIONS OF OPTOELECTRONIC DEVICES | 2004年 / 5594卷
关键词
ultraviolet light source; light-emitting diode; LED; AlGaN quantum wells; internal quantum efficiency; current leakage; numerical simulation;
D O I
10.1117/12.567084
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compact ultraviolet light sources are currently of high interest for a range of applications, including solid-state lighting, short-range communication, and bio-chemical detection. We report on the design and analysis of AlGaN-based light-emitting diodes with an emission wavelength near 280 nm. Internal device physics is investigated by three-dimensional numerical simulation. The simulation incorporates a drift-diffusion model for the carrier transport, built-in polarization, the wurtzite energy band-structure of strained quantum wells, as well as radiative and nonradiative carrier recombination. Critical material parameters are identified and their impact on the simulation results is investigated. Limitations of the internal quantum efficiency by electron leakage and nonradiative recombination are analyzed. Increasing the stopper layer bandgap is predicted to improve the quantum efficiency and the light output of our LED substantially.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 13 条
[1]  
*CROSSL SOFTW BURN, 200408 APSYS CROSSL
[2]   Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures [J].
Fiorentini, V ;
Bernardini, F ;
Ambacher, O .
APPLIED PHYSICS LETTERS, 2002, 80 (07) :1204-1206
[3]   Modeling of GaN optoelectronic devices and strain-induced piezoelectric effects [J].
Flory, CA ;
Hasnain, G .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (02) :244-253
[4]  
MOE C, 2004, IN PRESS J CRYSTAL G
[5]   Gas source molecular beam epitaxy of high quality AlxGa1-xN (0≤x≤1) on Si(111) [J].
Nikishin, S ;
Kipshidze, G ;
Kuryatkov, V ;
Choi, K ;
Gherasoiu, I ;
de Peralta, LG ;
Zubrilov, A ;
Tretyakov, V ;
Copeland, K ;
Prokofyeva, T ;
Holtz, M ;
Asomoza, R ;
Kudryavtsev, Y ;
Temkin, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (04) :1409-1412
[6]   Radiative and nonradiative processes in strain-free AlxGa1-xN films studied by time-resolved photoluminescence and positron annihilation techniques [J].
Onuma, T ;
Chichibu, SF ;
Uedono, A ;
Sota, T ;
Cantu, P ;
Katona, TM ;
Keading, JF ;
Keller, S ;
Mishra, UK ;
Nakamura, S ;
DenBaars, SP .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) :2495-2504
[7]   3D simulation and analysis of AlGaN/GaN ultraviolet light emitting diodes [J].
Piprek, J ;
Katona, T ;
DenBaars, SP ;
Li, S .
LIGHT -EMITTING DIODES: RESEARCH, MANUFACTURING, AND APPLICATIONS VIII, 2004, 5366 :127-136
[8]  
PIPREK J, 2004, SIMULATION SEMICONDU
[9]  
PIPREK J, 2004, OPTOELECTRONIC DEVIC, pCH10
[10]  
Piprek J., 2003, Semiconductor Optoelectronic Devices-Introduction to Physics and Simulation