A multilinear extension of a class of fuzzy bi-cooperative games

被引:4
作者
Borkotokey, Surajit [1 ]
Hazarika, Pankaj [1 ,2 ]
Mesiar, Radko [3 ,4 ]
机构
[1] Dibrugarh Univ, Dept Math, Dibrugarh 786004, Assam, India
[2] Dibrugarh Univ Inst Engn & Technol, Dept Math, Dibrugarh, Assam, India
[3] Slovak Univ Technol, Dept Math, Radlinskeho Bratislava, Slovakia
[4] Acad Sci Czech Republic, Inst Informat Theory & Automat, Prague, Czech Republic
关键词
Fuzzy sets; bi-cooperative games; bi-coalitions; LG value; fuzzy bi-coalitions; CAPACITIES;
D O I
10.3233/IFS-141349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new class of bi-cooperative games with fuzzy bi-coalitions is proposed in multilinear extension form. The extension is shown to be unique. The solution concept discussed in [3] is investigated and characterized for this class of games.
引用
收藏
页码:681 / 691
页数:11
相关论文
共 9 条
[1]  
Bilbao J., 2000, Cooperative games on combinatorial structures
[2]   The Shapley value for bicooperative games [J].
Bilbao, J. M. ;
Fernandez, J. R. ;
Jimenez, N. ;
Lopez, J. J. .
ANNALS OF OPERATIONS RESEARCH, 2008, 158 (01) :99-115
[3]   Bi-cooperative games with fuzzy bi-coalitions [J].
Borkotokey, Surajit ;
Sarmah, Pranjal .
FUZZY SETS AND SYSTEMS, 2012, 198 :46-58
[4]   Bi-capacities - II: the Choquet integral [J].
Grabisch, M ;
Labreuche, C .
FUZZY SETS AND SYSTEMS, 2005, 151 (02) :237-259
[5]   Bi-capacities - I: definition, Mobius transform and interaction [J].
Grabisch, M ;
Labreuche, C .
FUZZY SETS AND SYSTEMS, 2005, 151 (02) :211-236
[6]   A value for bi-cooperative games [J].
Labreuche, Christophe ;
Grabisch, Michel .
INTERNATIONAL JOURNAL OF GAME THEORY, 2008, 37 (03) :409-438
[7]   The Shapley function for fuzzy cooperative games with multilinear extension form [J].
Meng, Fan-Yong ;
Zhang, Qiang .
APPLIED MATHEMATICS LETTERS, 2010, 23 (05) :644-650
[8]  
OWEN G, 1972, MANAGE SCI, V18, P64, DOI DOI 10.1287/MNSC.18.5.64
[9]   FUZZY SETS [J].
ZADEH, LA .
INFORMATION AND CONTROL, 1965, 8 (03) :338-&