Nonsmooth analysis on smooth manifolds

被引:93
作者
Ledyaev, Yu. S. [1 ]
Zhu, Qiji J.
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] VA Steklov Math Inst, Moscow 117966, Russia
关键词
differential manifolds; nonsmooth analysis; calculus of semicontinuous functions on manifolds; differential inclusions on manifolds; monotonicity and invariance;
D O I
10.1090/S0002-9947-07-04075-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study infinitesimal properties of nonsmooth ( nondifferentiable) functions on smooth manifolds. The eigenvalue function of a matrix on the manifold of symmetric matrices gives a natural example of such a nonsmooth function. A subdifferential calculus for lower semicontinuous functions is developed here for studying constrained optimization problems, nonclassical problems of calculus of variations, and generalized solutions of first-order partial differential equations on manifolds. We also establish criteria for monotonicity and invariance of functions and sets with respect to solutions of differential inclusions.
引用
收藏
页码:3687 / 3732
页数:46
相关论文
共 81 条
[1]  
[Anonymous], 1984, P INT C MATH WARSZ 1
[2]  
[Anonymous], 1968, MATH SCI ENG
[3]  
[Anonymous], 1980, SOVIET MATH DOKL
[4]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[5]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI, V264
[6]  
BALLMANN W, 1985, PROGR MATH, V61
[7]  
Bardi M., 1997, OPTIMAL CONTROL VISC
[8]  
BARRON EN, 1990, COMMUN PART DIFF EQ, V15, P1713
[9]   OPTIMAL-CONTROL AND SEMICONTINUOUS VISCOSITY SOLUTIONS [J].
BARRON, EN ;
JENSEN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (02) :397-402
[10]   On the Cones of Tangents with Applications to Mathematical Programming [J].
Bazaraa, M. S. ;
Goode, J. J. ;
Nashed, M. Z. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 13 (04) :389-426